
Finding Hamiltonian Cycles
in the

Inner Cube of an n-Cube
Preliminary Draft

Brent M. Dingle

CPSC 626
Fall 1998

Texas A&M University

Abstract:
In this paper we will be examining sequential and parallel methods of finding Hamiltonian Cycles in the
inner cube of a given n-cube. The intent was to convert a currently existing sequential method into a
parallel method for time improvement or to create an entirely new parallel method – most likely specific to
this problem. In the end it is concluded there is no significant gain from converting current sequential
methods into parallel methods and no obviously implementable parallel solution presents itself specific to
this problem.

Regardless, we will actually present solutions derived by the sequential methods discussed for the cases of
n = 3, 5 and 7 (and attach the C++ sequential code implementation).

Dingle 1

The first order of business is defining what is meant by inner cube of an n-cube.

Definition: An n-cube is constructed by taking all permutations of n binary digits and connecting them by
placing edges between those permutations which differ by exactly one digit.

For example the 2-cube:

Or the 3-cube:

Thus for every n ≥ 2, we create an ‘n-dimensional’ cube.
It should be noted that we can express these cubes in a slightly different fashion (henceforth referred to as
columnar notation). For example consider the 3-cube again:

From this we can illustrate what we mean by inner cube.

Definition: The complement of a binary digit is obtained by changing each zero digit to a one and each one
digit to a zero. (e.g. the complement of 010 is 101, the complement of 100 is 011, etc).

Definition: Given an n-cube with n odd, the inner cube is the graph composed of the set of vertices such
that each vertex contains (n+1)/2 zeroes (ones) and (n+1)/2 –1 ones (zeroes) combined with the
complements of such vertices with all edges between the vertices. This will correspond to the two
innermost columns as we have drawn the 3-cube above (i.e. vertices: 001, 010, 100, 101, 011 and 110).

Dingle 2

All other Graph Theory terms are defined in the commonly used fashions (see reference 6).

So what we are looking for is a Hamiltonian cycle on the inner cube of the n-cube.
In the 3-cube case, using columnar notation, this is easily done:

or using the more common drawing:

The 5-cube case is slightly more difficult, the 7-cube case is much more difficult and the 9-cube case is
(currently) unsolved. To understand why this is so we need to examine some properties of the inner cube:

Properties of inner cubes:
Given an n-cube with n odd:
1. In our columnar notation there will always be n+1 columns representing the entire n-cube and the first

(n+1)/2 columns will mirror the other side of the graph in a complementary fashion.
2. Our inner cube is made up of the (n+1)/2 column and the (n+1)/2 + 1 column.
3. The (n+1)/2 column will be the complement of the (n+1)/2 + 1 column.
4. There will be (n+1)/2 edges between these columns.
5. For i > 1 and i ≤ (n+1)/2 the number of vertices in the ith column is:

))2((
)1(

)1(
)(. −−

−
−

= in
i

iNumVerts
iVertsNum , where NumVerts(1) = 1.

So for example with n = 5:

Dingle 3

Column Number Number of Vertices
1 1
2 (1 / 1) * (5 – 0) = 5
3 (5 / 2) * (5 – 1) = 10
4 10 by symmetry to column 3
5 5 by symmetry to column 2
6 1 by symmetry to column 1 (or by extended definition)

So our inner cube will have 10 + 10 = 20 vertices and each vertex will have degree = (5+1)/2 = 3.

Continuing on with n = 7:

Column Number Number of Vertices
1 1
2 (1 / 1) * (7 – 0) = 7
3 (7 / 2) * (7 – 1) = 21
4 (21 / 3) * (7 – 2) = 35
5 35 by symmetry
6 21 by symmetry
7 7 by symmetry
8 1 by symmetry

So our inner cube will have 35 + 35 = 70 vertices and each vertex will have degree = (7+1)/2 = 4.

And in the case of n = 9:

Column Number Number of Vertices
1 1
2 (1 / 1) * (9 – 0) = 9
3 (9 / 2) * (9 – 1) = 36
4 (36 / 3) * (9 – 2) = 84
5 (84 / 4) * (9 – 3) = 126
6 126 by symmetry
7 84 by symmetry
8 36 by symmetry
9 9 by symmetry
10 1 by symmetry

So our inner cube will have 126 + 126 = 252 vertices and each vertex will have degree = (9+1)/2 = 5.

And with no great surprise the numbers just keep getting larger and the difficulty keeps growing.

Notice our total number of possible solutions is around (degree of each vertex - 1)(number of vertices).

Dingle 4

The general difficulties of finding a Hamiltonian cycle in an arbitrary graph are well documented
throughout the Computer Science world. In general, the problem of determining if a given graph is
Hamiltonian is NP-Complete and actually finding a Hamiltonian cycle is NP-Hard. It is also well known
that this problem relates in some very direct ways to the Travelling Salesman Problem.

All of that aside it is also known that a general way to find Hamiltonian cycles sequentially is to use an
exhaustive method based on “backtracking.”
This solution method goes basically as follows:

1. Create the adjacency matrix of the graph to be used.
2. Pick a vertex to start on.
3. Store all the vertices adjacent to this vertex in a stack.
4. Pick the vertex on top of the stack.
5. Store all the vertices adjacent to this vertex (not already visited) in a stack.
6. Repeat 4 and 5 until we obtain a cycle or no longer have valid adjacent vertices.
7. Remove the top element on the stack and repeat 4, 5 and 6 until no elements remain.

For graphs with many vertices (say more than 30 or 40) this process takes a very long time to complete.
However as it tries every possible path it will succeed in finding all existing Hamiltonian cycles.

It should be noticed that the “backtracking” method gains very little if “directly” converted into a parallel
algorithm. You might be able to knock out several powers of order but when you are looking at say 4256 and
comparing it to 4250, while you have something better it does not help much.

Fortunately throughout time many people have attempted to solve this type of problem. Unfortunately,
none of them have found a general solution. Most of the techniques of making the problem solvable in
short order attempt to reduce the problem size in some way. This requires rather intensive knowledge of the
problem and makes the solution method very specific. Some other techniques of solving this type of
problem employ various heuristic methods. Yet others use a form of random “guessing” where the
Hamiltonian cycle might be. Some of these methods do not even guarantee that they will find the cycle if it
is indeed there. There are some methods which try to classify certain types of this problem with criteria
about the graph. For instance there has been some focus on random graphs and on bipartite (planar) graphs.
While this may lead to some form of “general type” solutions the criteria of the graphs is still rather
limiting.

Generally this is discouraging. In my research I have not yet found any “general type” solutions which
would apply to inner cubes – though the research on bipartite graphs using parallel processing may or may
not be adapted in some way to be applicable (I am still in the process of ‘digesting’ the material at hand).

With this thought in mind I began focussing my research more towards parallel algorithms (some of what I
had uncovered was already parallel related). Unfortunately, I found much the same results there as with the
sequential cases. The solutions to this type of problem are mostly case specific, with very few general
techniques. There is, however, a large number of insinuations in the literature that parallel machines should
make these problems easier, but I noticed a severe lack of information beyond theoretical guessing.

Yet all is not lost, as it happens the backtracking method with the speed of computers today is capable of
finding the solutions for n=3 and n=5 in a very short amount of time (in the manner of seconds and then in
a manner of minutes correspondingly). The n=7 case takes slightly longer, running into the days and weeks
(if not years) to come to full completion. Currently I have been running the program for two days on a
Pentium 266 processor operating under Windows 95 and have located 1920 cycles. I have not yet analyzed
the results thoroughly to say that they are distinct. Given that the first 24 vertices all match, I suspect the
cycles are more or less the same just running through various combinations of smaller cycles. And that
brings us to how we might optimize our solution process.

Dingle 5

Since my research has turned up very little direct help on solving the problem, it has become obvious that
the only way to solve it will be to analyze the problem structure itself and formulate some form of specific
solution technique. The complication being that we cannot be too specific as it would be very nice if the
solution were to work for any n-cube (i.e. not just for a 7-cube or 9-cube, but any n-cube). To this end we
will examine the inner cube’s structure:

Suppose we wish to parallelize our attack on the problem by preselecting 12 unique paths and giving each
path to a single processor, to have it start from there:
So let n = 7 and consider the vertex 0000111 and its neighbors:

It was my original belief that because there was so much duplication of neighbors that this would somehow
allow us to decrease the total number of paths being searched.
For example, assume we picked the paths:

A = 0000111 – 001111 – 0001011
and

B = 0000111 – 1000111 – 1000011
as two of our starting paths. Further assume we send path A to processor 1 and path B to processor 2. Then
it would seem that if processor 1 searched the path A – 1001011 – whatever, then processor 2 should not
have to search path B – 1001011 – whatever. Unfortunately, while I believe this to be true, I cannot prove it
to be. However, if it is true it should greatly decrease the time needed to arrive at completion by reducing
duplicated efforts. In the above picture it would reduce the path choices from 12 to 6 which would cascade
to a much greater savings.

As for the existence of duplicated efforts, that should be obvious. The first evidence of this is simply noting
that once you have found one cycle you can take the last element and make it the second and you will
reverse the cycle (and an exhaustive method will have to calculate both these cases independently).

Dingle 6

Also consider the below cycles which are solutions to the 7-cube scenario (presented by vertex number and
then in binary):

Cycle 1:

1 51 23 63 33 69 35 70 34 66 26
60 30 59 28 68 32 65 25 54 4 44
16 50 20 48 17 67 31 64 24 58 8
39 10 40 9 38 5 55 27 56 29 57
7 37 6 46 19 47 13 41 12 62 22
53 3 43 14 42 15 49 18 45 11 61
21 52 2 36

0000111 1000111 1000110 1100110 1100100
1110100 1110000 1111000 1101000 1101100
1001100 1011100 1011000 1011010 1010010
1110010 1100010 1101010 1001010 1001110
0001110 0101110 0101100 0111100 0111000
0111001 0110001 1110001 1100001 1101001
1001001 1011001 0011001 0011101 0011100
0011110 0011010 0011011 0010011 1010011
1010001 1010101 1010100 1010110 0010110
0010111 0010101 0110101 0110100 0110110
0100110 0100111 0100101 1100101 1000101
1001101 0001101 0101101 0101001 0101011
0101010 0111010 0110010 0110011 0100011
1100011 1000011 1001011 0001011 0001111

Cycle 2:

1 51 23 63 33 69 35 70 34 66 26
60 30 59 28 68 32 65 25 54 4 44
16 50 20 48 17 67 31 64 24 58 8
39 10 40 9 38 2 52 21 61 11 41
13 47 19 46 6 37 7 57 29 56 27
55 5 45 18 49 15 42 14 43 12 62
22 53 3 36

0000111 1000111 1000110 1100110 1100100
1110100 1110000 1111000 1101000 1101100
1001100 1011100 1011000 1011010 1010010
1110010 1100010 1101010 1001010 1001110
0001110 0101110 0101100 0111100 0111000
0111001 0110001 1110001 1100001 1101001
1001001 1011001 0011001 0011101 0011100
0011110 0011010 0011011 0001011 1001011
1000011 1100011 0100011 0100111 0100110
0110110 0110100 0110101 0010101 0010111
0010110 1010110 1010100 1010101 1010001
1010011 0010011 0110011 0110010 0111010
0101010 0101011 0101001 0101101 0100101
1100101 1000101 1001101 0001101 0001111

Dingle 7

Notice that the first 38 terms are identical, these terms are in italics. The variance occurs in the remaining
32 terms. Further notice the sequence in cycle 1: 5, 55, 27, 56, 29, 57, 7, 37, 6, 46, 19, 47, 13, 41. Now
locate 5 in cycle 2. Now walk backwards in cycle 2 and you will obtain the same sequence. Look closer
and you will see even more similarities. It almost appears as though some form of mobius twist was
performed. This is only one instance of many that has turned up in looking at the solutions of the 7-cube
case.

So clearly there is an enormous amount of duplication in the process as demonstrated by the results of the
7-cube case. Even as I type this paper, the program is still churning away trying to solve for all the cycles.
It has currently found cycle number 1920 and still the first 24 vertices remain unchanged as compared to
the first cycle it found (As printing all those cycles would occupy over 200 pages I will not be doing so).

With this in mind I would propose a solution method such that:
1. Determine some finite number of short paths, say 12.Choose these paths in such a way as,

based on the duplicate neighbor criteria above, that the total number of path possibilities is
minimized.

2. Implement a “backtracking” method algorithm which takes a “short” path as its initial input
and from there calculates any/all Hamiltonian cycles.

3. Having completed 1 and 2 above using a single processor run the modified “backtracking”
algorithm 12 times on a single processor or use a parallel environment with 12 processors.

It should be noted that this method does require pre-processing to determine what neighbors are shared by
which vertices. Once a method for determining how to do this algorithmically is completed it would seem
that in a parallel environment the processors might “share” some of their solutions. For example knowing
that you can convert the sequence 5, 55, 27, 56, 29, 57, 7, 37, 6, 46, 19, 47, 13, 41, 12, 62, 22, 53, 3, 43, 14,
42, 15, 49, 18, 45, 11, 61, 21, 52, 2, 36 into 2, 52, 21, 61, 11, 41, 13, 47, 19, 46, 6, 37, 7, 57, 29, 56, 27, 55,
5, 45, 18, 49, 15, 42, 14, 43, 12, 62, 22, 53, 3, 36 would be helpful. Along the same lines it might even be
wise to calculate these equivalent sequences in advance.

In conclusion it should be obvious that this problem does – somewhere – have the properties necessary to
reduce it to being solvable in a much shorter time frame. It should also be obvious that the time could be
further reduced by sending specific “short” starter paths to different processors (or likewise using only one
processor and multiple runs with different starting paths). However, it is with much regret, that in the past
four weeks I have been unable to exploit these properties to the extent of actually implementing such a
process.

- BMD

Attached should be the entire solution to the 5-cube case along with the C++ code used to derive the
solution. The above cited 7-cube case solutions were also calculated by the attached code.

Dingle 8

Bibliography

1. Bang-Jensen, J., M El Haddad, Y. Manoussakis and T. M. Przytycka, Parallel Algorithms for the
Hamiltonian Cycle and Hamiltonian Path Problems in Semicomplete Bipartite DiGraphs from
Algorithmica, 17: 67-87, Springer-Verlag New York Inc., 1997.

2. Bellman, Richard. Algorithms Graphs and Computers, Academic Press, New York, 1970. This book is
Volume 62 in Mathematics in Science and Engineering.

3. Chambers, Lance. Practical Handbook of Genetic Algorithms: Applications, Volume I, CRC Press,
New York, 1995.

4. Evans, James R. Optimization algorithms for networks and graphs – 2nd ed., rev. and expanded, Mercel
Dekker, Inc., New York, 1992.

5. Hu, T. C. Combinatorial Algorithms, Addison Wesley Publishing Company, 1982.
6. Laufer, Henry B. Discrete mathematics and Applied Modern Algebra, Prindle, Weber and Schmidt

(PWS), Boston, 1984.
7. Mackenzie, Philip D. and Quentin F. Stout, Optimal parallel Construction of Hamiltonian Cycles and

Spanning Tree in Random Graphs (Preliminary Version), from Proc. 5th ACM Symp. on Parallel
Algorithms and Architectures, pp. 224-229, 1993.

8. Mott, Joe L. Discrete Mathematics for Computer Scientists and Mathematicians, Prentice-Hall, New
Jersey, 1986.

9. Nijenhuis, Albert and Herbert S. Wilf. Combinatorial Algorithms, Academic Press, New York, 1975.
10. Reinelt, Gerard. Lecture Notes in Computer Science 840: The Traveling Salesman, Computation

Solutions for TSP Applications, Springer-Verlag Berlin Heidelberg 1994.
11. Rulan, Kevin Scott. Polyhedral Solution to the Pickup and Delivery Problem, Dissertation presented to

the Sever Institute of Washington University at Saint Louis for partial fulfillment for the degree of
Doctor of Science, August, 1995.

12. Vandegriend, Basil. Finding Hamiltonian Cycles: Algorithms, Graphs and Performance, Thesis
submitted to the University of Alberta, Spring 1998.

Dingle 9

Program Output for the 5-cube:

HamTrack Program for finding Hamiltonian Cycles in
the inner cube of an n-cube.

Written by Brent Dingle, December 1998.
Program for CPSC 626, Texas A&M University.
Thanks to Dr. Amato (CPSC) and Dr. Hobbs (MATH).

Please enter the number of digits (odd integer < 16).
--> 5
For 5 digits we will be interested in
columns 3 and 4. We note there will be
10 vertices in each of these columns.

Thus if a Hamiltonian cycle exists it will
contain 20 vertices.

There will also be 3 edges from a vertex in
column 3 to a vertex in column 4.

Creating Adjacency Matrix...
Beginning to look for Ham. Cycles...

C1:
1 15 8 19 10 20 9 17 3 11 2
16 7 18 4 13 6 14 5 12

00011 10011 10010 11010 11000 11100 10100 10110 00110 00111 00101
10101 10001 11001 01001 01101 01100 01110 01010 01011

C2:
1 15 8 19 10 18 7 16 2 13 4
12 5 14 6 20 9 17 3 11

00011 10011 10010 11010 11000 11001 10001 10101 00101 01101 01001
01011 01010 01110 01100 11100 10100 10110 00110 00111

C3:
1 15 8 19 5 14 6 20 10 18 7
16 9 17 3 11 2 13 4 12

00011 10011 10010 11010 01010 01110 01100 11100 11000 11001 10001
10101 10100 10110 00110 00111 00101 01101 01001 01011

C4:
1 15 8 19 5 12 4 13 6 14 3
17 9 20 10 18 7 16 2 11

00011 10011 10010 11010 01010 01011 01001 01101 01100 01110 00110
10110 10100 11100 11000 11001 10001 10101 00101 00111

Dingle 10

C5:
1 15 8 17 9 20 10 19 5 12 4
18 7 16 2 13 6 14 3 11

00011 10011 10010 10110 10100 11100 11000 11010 01010 01011 01001
11001 10001 10101 00101 01101 01100 01110 00110 00111

C6:
1 15 8 17 9 16 7 18 4 13 2
11 3 14 6 20 10 19 5 12

00011 10011 10010 10110 10100 10101 10001 11001 01001 01101 00101
00111 00110 01110 01100 11100 11000 11010 01010 01011

C7:
1 15 8 17 3 14 6 20 9 16 7
18 10 19 5 12 4 13 2 11

00011 10011 10010 10110 00110 01110 01100 11100 10100 10101 10001
11001 11000 11010 01010 01011 01001 01101 00101 00111

C8:
1 15 8 17 3 11 2 13 6 14 5
19 10 20 9 16 7 18 4 12

00011 10011 10010 10110 00110 00111 00101 01101 01100 01110 01010
11010 11000 11100 10100 10101 10001 11001 01001 01011

C9:
1 15 7 18 10 20 9 16 2 11 3
17 8 19 5 14 6 13 4 12

00011 10011 10001 11001 11000 11100 10100 10101 00101 00111 00110
10110 10010 11010 01010 01110 01100 01101 01001 01011

C10:
1 15 7 18 10 19 8 17 3 14 5
12 4 13 6 20 9 16 2 11

00011 10011 10001 11001 11000 11010 10010 10110 00110 01110 01010
01011 01001 01101 01100 11100 10100 10101 00101 00111

C11:
1 15 7 18 4 13 6 20 10 19 8
17 9 16 2 11 3 14 5 12

00011 10011 10001 11001 01001 01101 01100 11100 11000 11010 10010
10110 10100 10101 00101 00111 00110 01110 01010 01011

C12:
1 15 7 18 4 12 5 14 6 13 2
16 9 20 10 19 8 17 3 11

00011 10011 10001 11001 01001 01011 01010 01110 01100 01101 00101
10101 10100 11100 11000 11010 10010 10110 00110 00111

Dingle 11

C13:
1 15 7 16 9 20 10 18 4 12 5
19 8 17 3 14 6 13 2 11

00011 10011 10001 10101 10100 11100 11000 11001 01001 01011 01010
11010 10010 10110 00110 01110 01100 01101 00101 00111

C14:
1 15 7 16 9 17 8 19 5 14 3
11 2 13 6 20 10 18 4 12

00011 10011 10001 10101 10100 10110 10010 11010 01010 01110 00110
00111 00101 01101 01100 11100 11000 11001 01001 01011

C15:
1 15 7 16 2 13 6 20 9 17 8
19 10 18 4 12 5 14 3 11

00011 10011 10001 10101 00101 01101 01100 11100 10100 10110 10010
11010 11000 11001 01001 01011 01010 01110 00110 00111

C16:
1 15 7 16 2 11 3 14 6 13 4
18 10 20 9 17 8 19 5 12

00011 10011 10001 10101 00101 00111 00110 01110 01100 01101 01001
11001 11000 11100 10100 10110 10010 11010 01010 01011

C17:
1 12 5 19 10 20 6 14 3 11 2
13 4 18 7 16 9 17 8 15

00011 01011 01010 11010 11000 11100 01100 01110 00110 00111 00101
01101 01001 11001 10001 10101 10100 10110 10010 10011

C18:
1 12 5 19 10 18 4 13 2 16 7
15 8 17 9 20 6 14 3 11

00011 01011 01010 11010 11000 11001 01001 01101 00101 10101 10001
10011 10010 10110 10100 11100 01100 01110 00110 00111

C19:
1 12 5 19 8 17 9 20 10 18 4
13 6 14 3 11 2 16 7 15

00011 01011 01010 11010 10010 10110 10100 11100 11000 11001 01001
01101 01100 01110 00110 00111 00101 10101 10001 10011

C20:
1 12 5 19 8 15 7 16 9 17 3
14 6 20 10 18 4 13 2 11

00011 01011 01010 11010 10010 10011 10001 10101 10100 10110 00110
01110 01100 11100 11000 11001 01001 01101 00101 00111

Dingle 12

C21:
1 12 5 14 6 20 10 19 8 15 7
18 4 13 2 16 9 17 3 11

00011 01011 01010 01110 01100 11100 11000 11010 10010 10011 10001
11001 01001 01101 00101 10101 10100 10110 00110 00111

C22:
1 12 5 14 6 13 4 18 7 16 2
11 3 17 9 20 10 19 8 15

00011 01011 01010 01110 01100 01101 01001 11001 10001 10101 00101
00111 00110 10110 10100 11100 11000 11010 10010 10011

C23:
1 12 5 14 3 17 9 20 6 13 4
18 10 19 8 15 7 16 2 11

00011 01011 01010 01110 00110 10110 10100 11100 01100 01101 01001
11001 11000 11010 10010 10011 10001 10101 00101 00111

C24:
1 12 5 14 3 11 2 16 9 17 8
19 10 20 6 13 4 18 7 15

00011 01011 01010 01110 00110 00111 00101 10101 10100 10110 10010
11010 11000 11100 01100 01101 01001 11001 10001 10011

C25:
1 12 4 18 10 20 6 13 2 11 3
14 5 19 8 17 9 16 7 15

00011 01011 01001 11001 11000 11100 01100 01101 00101 00111 00110
01110 01010 11010 10010 10110 10100 10101 10001 10011

C26:
1 12 4 18 10 19 5 14 3 17 8
15 7 16 9 20 6 13 2 11

00011 01011 01001 11001 11000 11010 01010 01110 00110 10110 10010
10011 10001 10101 10100 11100 01100 01101 00101 00111

C27:
1 12 4 18 7 16 9 20 10 19 5
14 6 13 2 11 3 17 8 15

00011 01011 01001 11001 10001 10101 10100 11100 11000 11010 01010
01110 01100 01101 00101 00111 00110 10110 10010 10011

C28:
1 12 4 18 7 15 8 17 9 16 2
13 6 20 10 19 5 14 3 11

00011 01011 01001 11001 10001 10011 10010 10110 10100 10101 00101
01101 01100 11100 11000 11010 01010 01110 00110 00111

Dingle 13

C29:
1 12 4 13 6 20 10 18 7 15 8
19 5 14 3 17 9 16 2 11

00011 01011 01001 01101 01100 11100 11000 11001 10001 10011 10010
11010 01010 01110 00110 10110 10100 10101 00101 00111

C30:
1 12 4 13 6 14 5 19 8 17 3
11 2 16 9 20 10 18 7 15

00011 01011 01001 01101 01100 01110 01010 11010 10010 10110 00110
00111 00101 10101 10100 11100 11000 11001 10001 10011

C31:
1 12 4 13 2 16 9 20 6 14 5
19 10 18 7 15 8 17 3 11

00011 01011 01001 01101 00101 10101 10100 11100 01100 01110 01010
11010 11000 11001 10001 10011 10010 10110 00110 00111

C32:
1 12 4 13 2 11 3 17 9 16 7
18 10 20 6 14 5 19 8 15

00011 01011 01001 01101 00101 00111 00110 10110 10100 10101 10001
11001 11000 11100 01100 01110 01010 11010 10010 10011

C33:
1 11 3 17 9 20 6 14 5 12 4
13 2 16 7 18 10 19 8 15

00011 00111 00110 10110 10100 11100 01100 01110 01010 01011 01001
01101 00101 10101 10001 11001 11000 11010 10010 10011

C34:
1 11 3 17 9 16 2 13 4 18 7
15 8 19 10 20 6 14 5 12

00011 00111 00110 10110 10100 10101 00101 01101 01001 11001 10001
10011 10010 11010 11000 11100 01100 01110 01010 01011

C35:
1 11 3 17 8 19 10 20 9 16 2
13 6 14 5 12 4 18 7 15

00011 00111 00110 10110 10010 11010 11000 11100 10100 10101 00101
01101 01100 01110 01010 01011 01001 11001 10001 10011

C36:
1 11 3 17 8 15 7 18 10 19 5
14 6 20 9 16 2 13 4 12

00011 00111 00110 10110 10010 10011 10001 11001 11000 11010 01010
01110 01100 11100 10100 10101 00101 01101 01001 01011

Dingle 14

C37:
1 11 3 14 6 20 9 17 8 15 7
16 2 13 4 18 10 19 5 12

00011 00111 00110 01110 01100 11100 10100 10110 10010 10011 10001
10101 00101 01101 01001 11001 11000 11010 01010 01011

C38:
1 11 3 14 6 13 2 16 7 18 4
12 5 19 10 20 9 17 8 15

00011 00111 00110 01110 01100 01101 00101 10101 10001 11001 01001
01011 01010 11010 11000 11100 10100 10110 10010 10011

C39:
1 11 3 14 5 19 10 20 6 13 2
16 9 17 8 15 7 18 4 12

00011 00111 00110 01110 01010 11010 11000 11100 01100 01101 00101
10101 10100 10110 10010 10011 10001 11001 01001 01011

C40:
1 11 3 14 5 12 4 18 10 19 8
17 9 20 6 13 2 16 7 15

00011 00111 00110 01110 01010 01011 01001 11001 11000 11010 10010
10110 10100 11100 01100 01101 00101 10101 10001 10011

C41:
1 11 2 16 9 20 6 13 4 12 5
14 3 17 8 19 10 18 7 15

00011 00111 00101 10101 10100 11100 01100 01101 01001 01011 01010
01110 00110 10110 10010 11010 11000 11001 10001 10011

C42:
1 11 2 16 9 17 3 14 5 19 8
15 7 18 10 20 6 13 4 12

00011 00111 00101 10101 10100 10110 00110 01110 01010 11010 10010
10011 10001 11001 11000 11100 01100 01101 01001 01011

C43:
1 11 2 16 7 18 10 20 9 17 3
14 6 13 4 12 5 19 8 15

00011 00111 00101 10101 10001 11001 11000 11100 10100 10110 00110
01110 01100 01101 01001 01011 01010 11010 10010 10011

C44:
1 11 2 16 7 15 8 19 10 18 4
13 6 20 9 17 3 14 5 12

00011 00111 00101 10101 10001 10011 10010 11010 11000 11001 01001
01101 01100 11100 10100 10110 00110 01110 01010 01011

Dingle 15

C45:
1 11 2 13 6 20 9 16 7 15 8
17 3 14 5 19 10 18 4 12

00011 00111 00101 01101 01100 11100 10100 10101 10001 10011 10010
10110 00110 01110 01010 11010 11000 11001 01001 01011

C46:
1 11 2 13 6 14 3 17 8 19 5
12 4 18 10 20 9 16 7 15

00011 00111 00101 01101 01100 01110 00110 10110 10010 11010 01010
01011 01001 11001 11000 11100 10100 10101 10001 10011

C47:
1 11 2 13 4 18 10 20 6 14 3
17 9 16 7 15 8 19 5 12

00011 00111 00101 01101 01001 11001 11000 11100 01100 01110 00110
10110 10100 10101 10001 10011 10010 11010 01010 01011

C48:
1 11 2 13 4 12 5 19 10 18 7
16 9 20 6 14 3 17 8 15

00011 00111 00101 01101 01001 01011 01010 11010 11000 11001 10001
10101 10100 11100 01100 01110 00110 10110 10010 10011

Total number of Hamiltonian cycles found: 48
Note: depending on how the graph was set up there might
be only half that number.

