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Abstract:
In this paper we will be examining general algorithms for finding Hamiltonian Cycles in the inner cube of a
given n-cube.  All of the algorithms presented will be based on a backtracking scheme with various
heuristics (or absolute guessing) “thrown in.” The purpose of this paper is to present several attempts at
solving this problem and the various techniques used. The overall intent of the research was to find some
sequential method that would be guaranteed to solve the problem which could be “sped up” via a parallel
implementation.
Also in this paper will be found a discussion of the repetitive structure of the inner n-cube.

It is assumed the reader is familiar with the problem of finding a Hamiltonian cycle on the inner n-cube so
no definitions nor detailed explanation of such will be given here.
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For all of the implementations of the algorithms we are about to discuss we have opted to use a three
function version of a backtracking based algorithm. So throughout this paper we will be using variations of
these three general functions: FindCycle(), BackTrack(), and HamCycle(). In these functions, we assume
we already have established the adjacency matrix and know the length of the cycle for which we are
looking. The general idea is as follows, it is based from Fortran code presented in [10]:

In all of the methods presented, FindCycle() is changed only by changing the actual function names for
BackTrack() and HamCycle(). Here is the general appearance of FindCycle():

long FindCycle()
{
   long A[GRAPH_MAXVERT+1];      // the cycle, coded by vertex index
   long stack[GRAPH_STACK_MAX+1];
   long index, k, m, nstk;
   long count;

   count = 0;         // count keeps track of how many ham. cycles found
   nstk = GRAPH_STACK_MAX;   // maximum stack size
   index = 0;

   // num_verts = length of expected cycles
   // index = 0 should set k = 1, m = 0 on first call to BackTrack

   // BackTrack(...) sets
   // index = 1 for successfully done,
   // index = 3 means  no more vectors of type sought
   // index = 2 for call HamCycle

   while (index != 3)
   {
      BackTrack(NumVerts, A, &index, &k, &m, stack, nstk);
      if (index == 2)
      {
         HamCycle(NumVerts, A, k, &m, stack, nstk, AdjMat);
      }
      else if (index == 1)  // found a cycle
      {
         count++;           // count = total number of cycles found
                                  // could also print A[] here to display the cycle
      }
   } // end while index !=3 (i.e. we are not done)

   printf("\nDone.\n\n");
   return 1;
} // end FindCycle
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The general appearance of BackTrack() is:

long BackTrack(long stop_len, long A[GRAPH_MAXVERT+1],
                             long *state, long *A_index, long *stack_index,
                             long Stack[GRAPH_STACK_MAX+1], long nstk)
// stop_len is the desired length of the a complete output vector
// A is the output vector
// On entry:
// state = 0 for just starting
// state = 2 for keep going     (shouldn't ever be 1 or 3 on entry)
//    BackTrack(...) sets
//    state = 1 for successfully done, (size of A equals stop_len)
//    state = 3 means  no more vectors of type sought
//    state = 2 for call HamCycle
// A_index is the length of a partially constructed vector:
//         a call to HamCycle() is a request for position A[A_index];
//         A_index is set by BackTrack()
// stack_index is the location of the last item on the stack;
//         it is changed by both BackTrack() and HamCycle()
// stack is a linear array, of maximal length nstk, whose appearance
//    at a typical step is:
// z z z z z z z n1 z z z z z n2 z z z z n3 z z...
// \________/    \______/
//     \/                        \/
//  n1 candidates      n2 candidates
//  for position         for position           … etc
//   A(1)                   A(2)
//
// i.e. let the lists of candidates for A(1),...,A(A_index-1), A(A_index)
// be stored in stack[], each list followed by its length
//
////////////////////////////////////////////////////////////////////////////
{
   long num_cand, done;
   long out_vert_index, cur_nhbr;
   long i;

   if (*state == 0)
   {
      *A_index = 1;
      *stack_index = 0;
      *state = 2;

      return 2;
   }

   done = 0;
   while (!done)
   {
      num_cand = Stack[*stack_index];
      *stack_index = *stack_index - 1;

      if (num_cand != 0)
      {
         done = 1;
      }
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      else  // if (num_cand == 0)
      {
         // So we are going to pop off an element from A by decrementing A_index.

         *A_index = *A_index -1;
         if (*A_index == 0)
         {
            *state = 3;   // ran out of options, so fail
            return 3;
         }
      }
   } // end while !done
   // Now we pop off one of the elements and run with it.
   A[*A_index] = Stack[*stack_index];
   Stack[*stack_index] = num_cand - 1;
   if (*A_index == stop_len)                      // Check if we are done
   {
      *state = 1;
      return 1;
   }
   *A_index = *A_index + 1;
   *state = 2;
   return 2;
} // end BackTrack

The general appearance of HamCycle() is:

long HamCycle(long num_verts, long A[GRAPH_MAXVERT+1],
                           long A_index, long *stack_index,
                           long Stack[GRAPH_STACK_MAX+1], long nstk)
//
// num_verts = number of vertices in graph G
// A => A(i) is the i-th vertex in the current circuit
// A_index = index of the next step on the current partial circuit
// stack_index = current length of stack i
// stack = candidates for steps 1 to k-1
// nstk = maximum length of stack
//
// m_AdjMat[][] => if (m_AdjMat[i][j] = 1) then edge (i, j) is in G
//
// Purpose: Find the candidates for k-th vertex in Ham. cycle
// store them in stack and update m accordingly
////////////////////////////////////////////////////////////////////////////
{
   long vert[GRAPH_MAXVERT+1];  // temp storage of what verts adj. to A[k-1]
   long i;                                                 // standard looping index
   long k1, a1, m1;
   long min_num_nhbrs, nhbr_vert;

   if (A_index == 1)
   {
      Stack[1] = 1;                 // put vert 1 first
      Stack[2] = 1;                 // then there is 1 element in that section of the stack
      *stack_index = 2;
      return 2;
   }
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   // Find ALL the verts adjacent to A[A_index-1]
   k1 = A_index - 1;
   a1 = A[k1];
   for (i=1; i <= num_verts; i++)
   {
      vert[i] = m_AdjMat[a1][i];
   }

   // Make sure we remove all verts we have previously visited.
   for (i=1; i<= k1; i++)
   {
      m1 = A[i];
      vert[m1] = 0;       // 0 = false, 1 = true
   }

   m1 = *stack_index;
   if (A_index != num_verts)
   {
      for (i=1; i<= num_verts; i++)
      {
         if (vert[i] == 1)
         {
            m1 = m1 + 1;
            Stack[m1] = i;
         }
      } // end for
      Stack[m1+1] = m1 - (*stack_index);
      *stack_index = m1 + 1;
      return (m1 + 1);
   }  // end if k != num_verts

   for (i=1; i <= num_verts; i++)
   {
      if (vert[i])
      {
         if (!m_AdjMat[i][1])
         {
            Stack[m1+1] = m1 - (*stack_index);
            *stack_index = m1 + 1;
            return (m1+1);
         }
         *stack_index = *stack_index +2;
         Stack[*stack_index - 1] = i;
         Stack[*stack_index] = 1;
         return (*stack_index);
      }
   } // end for

   Stack[m1+1] = m1 - (*stack_index);
   *stack_index = m1 + 1;

   return (m1+1);

} // end HamCycle
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ASIDE:
Since all of the following methods are based on backtracking it may be important to note that the
backtracking method is almost directly related to a depth first graph traversal. This may be significant in
porting any backtracking algorithm over to a parallel machine.

For our comparison of methods we choose to examine the n = 5 and n = 7 cases.
The solution time on a Pentium 266 Windows 95 machine for the 5 case using the above “do nothing
special” backtracking algorithms takes about two seconds to solve completely (arriving at 48 “different”
cycles). The 7 case takes about 2.5 – 3.0 hours to arrive at the first finding of a cycle.

METHOD 1:
Our first method of attack was to always choose the vertex of minimal degree. To illustrate this, assume we
are at vertex A, which has neighbors B, C, and D. Further assume B and C each has 3 neighbors not already
in our presumed cycle while D has only 2 such neighbors. In this scenario we would choose to go to vertex
D and would never consider going to vertices B and C.

This method failed in the seven case.

METHOD 1 (modified):
While implementing method 1 we made a small typing error which resulted in us only throwing out ONE
of the non-minimal neighbors from our choice list (as opposed to throwing them all out). This resulted in
the five case arriving at 13 solutions while the 7 case’s first solution was arrived at in approximately 9
minutes. While this was nice we ran this algorithm on the 9 case for about 60 hours and never arrived at a
solution. We further could not demonstrate that finding a solution was guaranteed so we abandoned this
approach.

METHOD 2:
In this method we tried to implement a heuristic argument which goes as follows:
If we come to a vertex which has TWO or more unvisited neighbors each with only 2 neighbors remaining
(counting the one we are at) then we back up a step by “dead-ending” the vertex we are at (i.e. in our stack
we say that it has no neighbors).

This is based on the scenario:

    A ------ B  ------ C
    |
    |
    D ------ E

Say we are at A, if we go to B then eventually we must visit D and there is no way to leave D, so we would
be done, so we abort early to save time. Of course neither B nor D are the start-end vertex as that has
already been visited. The downside is we must check that neither B nor D is a neighbor of the start-end
vertex. If one is the neighbor of the start-end vertex, then we go to the one that is not by removing the
option of going to the one that is.

This seemed like a good idea but when implemented and run on the 7 case, the program finished in 1.5
minutes with the conclusion there were no Hamiltonian cycles. This may have been an error in the way we
were testing the neighbors.
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METHOD 2 (modified):
As oddities would have it when we were implementing method 2 we again made a typing error. This error
went to the effect that:

IF we are on vertex A with neighbors B and C and “others” not already in our cycle
   and B has only 1 neighbor remaining
   and C has only 1 OR 2 neighbors remaining
   and “others” all have more than 2 neighbors.
THEN we dead-end vertex A.
ELSE IF we are on vertex A with neighbors B and C and “others” not already in our cycle
   and B has only 1 neighbor remaining
   and C has more than 2 neighbors
   and “others” all have more than 2 neighbors
THEN we force our choice to be B (we remove the option of going to any other neighbor).

This method for n = 3 found both cycles, for n = 5 it found 47 cycles (it missed 1) and for n = 7 it took only
9 SECONDS to arrive at the first cycle.
It would be hoped that such a dramatic improvement in time would carry over to the n = 9 case.
Unfortunately this is not likely simply based on the number of possible combinations that still must be
examined.
Consider the very worst numbers (the real ones are slightly better):

For the n = 3 case the number of possibilities are 2 * 15,
for the n = 5 case the number of possibilities are 3 * 219,
for the n = 7 case the number of possibilities are 4 * 369,
for the n = 9 case the number of possibilities are 5 * 4251.

In the n = 9 case, even if we reduce the number of possibilities at each step from 4 to 2 we still are left with
5 * 2251 possibilities to examine. Only by the density of the Hamiltonian cycles could we hope to find one
in any short time period.

There is still one method we have yet to try:

METHOD 3:
From the above two accidental errors leading to a significant time improvement it seems obvious that there
is a way to selectively discard some choices at each step. It is highly likely that by studying the structure of
the inner n-cube these choices could be readily determined. The unfortunate downside is that we still must
face the fact that unless we are able to reduce the number of choices at each step down to exactly one we
will still have a very large number of possibilities to examine. With this in mind we shall now list some of
the properties of the inner n-cube.
1. The graph is clearly bipartite.
2. The graph is NOT chordal (i.e. there is not a chord across every cycle of length 6 or more).
3. The graph is NOT quasi-transitive directed, QTD, where a digraph D is QTD if for any triple x, y, z, of

distinct vertices of D such that (x, y) and (y, z) are arcs of D there is at least one arc from x to z or from
z to x ).

4. The graph is NOT semi-complete, where a semi-complete digraph is a digraph with no pair of
nonadjacent vertices.

5. In the inner n-cube, to get from a vertex to its inverse will take at least n steps.
6. The graph is almost self-similar repeating (like a fractal). The complication is that the repetitive

structures are interlocked with one another in a way that is not one or two dimensional.

Property 1 has an enormous amount of literature written about it. Property 2, 3 and 4  were encountered in
searching for a method to determine Hamiltonian cycles. It would seem that if the graph were chordal,
semi-complete or quasi-transitive we could apply some other people’s research. Unfortunately this is not
the case. Property 5 is just a nice observation, for it is property 6 that seems likely to be the real key. To
illustrate this repeating structure consider the following graphs:
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For the n=3 case the inner n-cube is simply a cycle of 6 vertices:

011 010

001 110

101 100

For the n=5 case we have the structure:

10011 -- 10001 11001 -- 11000

10010 11010

00011 -- 01011 -- 01001 10101 -- 10100 -- 11100

01010 10110

00111 -- 00101 01101 -- 01100

00110 01110

It might be worth noting there are at least twenty cycles of length 6 inside this structure. However it is
much more interesting if we “contract” some items into a single edge and then redraw to obtain the
following:
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So how did we arrive at the new graph? It is rather simple.
First we make the path 01001 – 01011 – 01010 into a single edge between 01001 and 01010.Thus we also
discard the edge from 01011 to 00011. We do a similar contraction on the path 10101 – 10100 – 10110.
Having done this we then contract the path 10001 – 10011 – 00011 – 00111 – 00110 into a single edge
between 10001 – 00110. We then do a similar contraction on the path 11001 – 11000 – 11100 – 01100 –
01110.

By doing this we have removed eight vertices from the graph and have abstracted a path between two
vertices into a “complex” edge between two vertices. We now redraw the graph, flipping the bottom
double-eight figure, to make it a little prettier:

Notice that in this graph it is VERY easy to locate a Hamiltonian cycle –  however, as the four “vertical”
edges now represent edges containing points (i.e. complex edges) any valid Hamiltonian cycle we want to
find must contain all four of these edges. In this particular contraction you cannot find such a Hamiltonian
cycle. This does not, however, mean the method fails. In fact if we simply do a different contraction, such
as that below, the method will succeed:
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Note that:
1. edge 00101 – 00110 = path  00101 – 00111 – 00110
2. edge 01110 – 01101 = path  01110 – 01100 – 01101
3. edge 11001 – 10110 = path  11001 – 11000 – 11100 – 10100 – 10110
4. edge 01010 – 10001 = path  01010 – 01011 – 00011 – 10011 – 10001

Now if we make the graph a little prettier we have:

And we see that the cycle:
00101 – 00110 –
01110 – 01101 –
01001 –
11001 – 10110 –
10010 – 11010 –
01010 – 10001 –
10101

does indeed hit all the needed edges and expands to the cycle:

00101 – 00111 – 00110 –
01110 – 01100 – 01101 –
01001 –
11001 – 11000 – 11100 – 10100 – 10110 –
10010 – 11010 –
01010 – 01011 – 00011 – 10011 – 10001 –
10101

Something you might notice is that we now have a shape repeated that is “half” the size of the original
shape. This may just be a coincidence, or it may be significant. Regardless the real problem to face is how
to get the computer to perform contractions that will be successful as opposed to those contractions which
fail.
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The structure for n = 7 (lines omitted for clarity):

0100111 0100011 0110011 0110001

1100011 0110010

0100101 0110101

1100101 0110100

0100110 1110001

1100110 1110000

0110110 1100001

0101110 1010001

1110010 101010
0000111 0010111 0010011 0101011 0101001 0111001

1101010 1010010

1110010 1100010

1010011 0001011

0110011 0101001

0011011 0101010

0010101 0101101

1010101 0101100

0110101 0100101

0010110 1101001

1010110 1001001

0011110 1101000

0001111 0001011 0011011 0011001

1001011 0011010

0001101 0011101

1001101 0011100

0001110 1001110 1011000 1011001

1000111 1000011 0111010 0111000

1000101 0111100

1000110 1111000
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Notice that the black vertices form the same structure as the inner 5-cube. This effect is repeated
throughout the structure. Also notice that the green vertices in the center of the structure only have
neighbors in the “first shell” around them.

0100111 - 0100011 0110011 - 0110001

1100011 0110010

0100101 0110101

1100101 0110100

0100110 1110001

1100110 1110000

0110110 1100001

0101110 1010001

1110010 101010
0000111 - 0010111 - 0010011 0101011 - 0101001 - 0111001

1101010 1010010

1110010 1100010

1010011 0001011

0110011 0101001

0011011 0101010

0010101 0101101

1010101 0101100

0110101 0100101

0010110 1101001

1010110 1001001

0011110 1101000

0001111 - 0001011 0011011 - 0011001

1001011 0011010

0001101 0011101

1001101 0011100

0001110 1001110 1011000 1011001

1000111 1000011 0111010 0111000

1000101 0111100

1000110 1111000

Note that while the above picture demonstrates the structure recurrence it does not lend itself immediately
to illustrating a way to contract the graph to something “better.”
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So what does this repetitive structure mean? Perhaps nothing, but maybe everything. It is suspected that the
inner 7-cube can be compressed in a fashion similar to how the inner 5-cube was. Likewise it is suspected
that the inner 9-cube can be compressed. If these suspicions are correct then we have solved the problem.
Unfortunately we do not, yet, know how to get the computer to do the proper compressions necessary and
drawing out the inner 9-cube to do it manually would be a rather tedious chore.

So in the mean time, it seems obvious that all the paths need not be searched. For example if the cycle went
through 0000111 to 0100111 to 0100101 and you did an exhaustive search and found no cycles then when
you backtrack and arrive at the option 0000111 to 0001111 to 0001101 you should not have to look down
the path that next goes to 0101101 as that was an option you explored via symmetry because 0100101 also
would have gone to 0101101. (Honest this makes sense if you look at the graph on the previous page). The
key point being that the symmetry reduces the need to check this option. The problem is getting the
computer to recognize this symmetry.

This structural symmetry technique might be expanded to simply exclude options of vertices which share a
neighbor and are on a cycle with that neighbor. For example in the n = 5 case: is it really necessary if we
start at 00011 to consider both 10011 and 00111?

These techniques may be exploited by careful construction of the adjacency matrix or by some clever
coding trick (given the success of our errors it might just be best to randomly discard one of the choices at
each step). Regardless, after studying the structure for over a month now, we have come to no definite way
to simplify the problem down to just one choice at each step. Nor have we even created a method which
would reduce the number of choices to one for a majority of the steps. This is unfortunate, but not
unexpected.

For the time being we must step back from the problem and work on more “solvable” problems.

Should any further work be attempted on this problem it would be advised that before attempting to create
a parallel algorithm to aid in the solution, that a sequential one be developed that is guaranteed to find a
cycle. Once that algorithm exists it would seem that if it is based on a backtracking method then porting it
into a parallel algorithm would require some derivative of a depth first graph searching technique.

As for future work that may be taken, perhaps exploring the algebraic representation of the graph would be
worth performing. It seems that it could represent some form of discrete (abelian?) group. It might also be
worth noting some of the effects the known cycles have. For example in the n=5 case it is interesting to see
that all the cycles have the pattern that inverse elements’ distances from one another follow this pattern:
15, 13, 7, 5, 15, 13, 7, 5, …
Notice that 15 = 5 in the opposite direction of the cycle as does 13 = 7. Unfortunately the n = 7 case does
not seem to follow the same concept, or if it does it is much more convoluted, and how this pattern would
be determined for the n = 9 case would appear to be an equally difficult problem to solve.

It might also be useful to implement an algorithm which does not start at 000001111 nor at 111110000 as
these just might be bad starting vertices for exhaustive measures. There might also be a way to create an
algorithm which starts its search by using a given “input” path. Or perhaps it is possible to create a program
to find all paths that are half the length of the cycle and try to splice them together.

Then again, perhaps backtracking is not the solution at all. Perhaps it would be better to spend time on
finding a way to have the computer contract the larger graphs into the smaller ones.

Whatever the solution may be, we have not been able to determine it in the last two months.

- BMD
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Code Attachments:
Below is the code used to implement method 1 (modified)

/////////////////////////////////////////////////////////////////////////////
// FindCycleMinWay
//
// Identical to FindCycle but calls *MinOnly functions
/////////////////////////////////////////////////////////////////////////////
long CGraph::FindCycleMinWay()
{
   FILE *out_file;
   long A[GRAPH_MAXVERT+1];      // the cycle, coded by vertex index
   long stack[GRAPH_STACK_MAX+1];
   long index, k, m, nstk;
   long i2, count;
   long vert_index;
   long adj_ok;

   // Init the A and stack
   printf("Initializing variables...\n");
   for (index=0; index < GRAPH_MAXVERT+1; index++)
   {
      A[index] = 0;
   }
   for (index=0; index < GRAPH_STACK_MAX+1; index++)
   {
      stack[index] = 0;
   }

   // Guarantee our adjacency matrix is up to date
   printf("Creating Adjacency Matrix...\n");

   adj_ok = SetAdjMat();
   if (!adj_ok)
   {
      printf("ERROR (FindCycle):\n");
      printf("Unable to create adjacency matrix.\n");
      return 0;
   }

   out_file = fopen("ham.txt", "w");
   printf("Writing to ham.txt\n");

   printf("Beginning to look for Ham. Cycles...\n\n");
   printf("Using MinOnly routines.\n\n");
   fprintf(out_file, "\nHamHer, number of vertices = %ld\n", m_NumVerts);
   fprintf(out_file, "Using MinOnly routines.\n\n");
   PrintTime(out_file);
   printf("\n");
   fprintf(out_file, "\n");
   fprintf(out_file, "========================================================\n");
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   count = 0;         // count keeps track of how many ham. cycles found
   nstk = GRAPH_STACK_MAX;
   index = 0;
   // num_verts = length of expected cycles
   // index = 0 should set k = 1, m = 0 on first call to BackTrack
   // BackTrack(...) sets
   // index = 1 for successfully done,
   // index = 3 means  no more vectors of type sought
   // index = 2 for call HamCycle

while (index != 3)
   {
      BackTrackMinOnly(m_NumVerts, A, &index, &k, &m, stack, nstk);
      if (index == 2)
      {
         HamCycleMinOnly(m_NumVerts, A, k, &m, stack, nstk);
      }
      else if (index == 1)  // found a cycle, print it
      {
         count++;           // count = total number of cycles found
         printf("C%ld: ", count);
         fprintf(out_file, "C%ld: ", count);

         // Print out the vertex indices
         for(i2=1; i2<= m_NumVerts; i2++)
         {
            printf("%ld\t",A[i2]);
            fprintf(out_file, "%ld\t",A[i2]);
         }
         printf("\n");
         fprintf(out_file, "\n");

         // Print out the actual vertex identifying strings
         for(i2=1; i2<= m_NumVerts; i2++)
         {
            vert_index = A[i2];
            printf("%s\t", m_Vert[vert_index].m_AssocStr);
            fprintf(out_file, "%s\t", m_Vert[vert_index].m_AssocStr);
         }
         printf("\n");
         fprintf(out_file, "\n");
         printf("\n");
         fprintf(out_file, "\n");
         PrintTime(out_file);
         fprintf(out_file, "----------------------------------------------------------\n");
      }
   } // end while index !=3 (i.e. we are not done)

   printf("\nDone.\n\n");
   fprintf(out_file, "\nDone.\n\n");
   PrintTime(out_file);
   fprintf(out_file, "========================================================\n");
   printf("\n");
   printf("Total number of Hamiltonian cycles found: %ld\n", count);
   printf("Note: depending on how the graph was set up there might\n");
   printf("be only half that number (or fewer) which are 'distinct.'\n");
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   printf("\n");

   fclose(out_file);
   return 1;
} // end FindCycleMinWay

////////////////////////////////////////////////////////////////////////////
// BackTrackMinOnly
//
// Just like backtrack but we only choose the vertices with the
// MINIMUM number of nhbrs remaining.
// This may not find ALL cycles but it has a good chance of finding ONE.
//
// stop_len is the desired length of the a complete output vector
// A is the output vector
// On entry:
// state = 0 for just starting
// state = 2 for keep going     (shouldn't ever be 1 or 3 on entry)
//    BackTrack(...) sets
//    state = 1 for successfully done, (size of A equals stop_len)
//    state = 3 means  no more vectors of type sought
//    state = 2 for call HamCycle
// A_index is the length of a partially constructed vector:
//         a call to HamCycle() is a request for position A[A_index];
//         A_index is set by BackTrack()
// stack_index is the location of the last item on the stack;
//         it is changed by both BackTrack() and HamCycle()
// stack is a linear array, of maximal length nstk, whose appearance
//    at a typical step is:
// z z z z z z z n1 z z z z z n2 z z z z n3 z z...
// \___________/    \_______/
//     \/               \/
//  n1 candidates      n2 candidates
//  for position       for position      etc
//     A(1)              A(2)
//
// i.e. let the lists of candidates for A(1),...,A(A_index-1), A(A_index)
// be stored in stack[], each list followed by its length
//
// Return the value should = state's new value.
// (this was translated from Fortran code, so indices start at 1)
// (and code is UGLY!)
//
////////////////////////////////////////////////////////////////////////////
long CGraph::BackTrackMinOnly(long stop_len, long A[GRAPH_MAXVERT+1],
                              long *state, long *A_index, long *stack_index,
                              long Stack[GRAPH_STACK_MAX+1], long nstk)
{
   long num_cand, done;
   long out_vert_index, cur_nhbr;
   long i;

   if (*state == 0)
   {
      *A_index = 1;
      *stack_index = 0;
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      *state = 2;

      return 2;
   }

   done = 0;
   while (!done)
   {
      num_cand = Stack[*stack_index];
      *stack_index = *stack_index - 1;

      if (num_cand != 0)
      {
         done = 1;
      }
      else  // if (num_cand == 0)
      {
         // So we are going to pop off an element from A
         // by decrementing A_index.
         // In the process we need to update our edge counts
         out_vert_index = A[*A_index];
         for (i=1; i<= m_Vert[out_vert_index].m_Degree; i++)
         {
            cur_nhbr = m_Vert[out_vert_index].m_Nhbr[i];
            m_Vert[cur_nhbr].m_NumNhbrsLeft++;
         }

         *A_index = *A_index -1;
         if (*A_index == 0)
         {
            *state = 3;   // ran out of options, so fail
            return 3;
         }
      }
   } // end while !done

   // Now we pop off one of the elements and run with it.
   // It is assumed that HamCycleMinOnly put only those
   // vertices with the fewest remaining edges.
   A[*A_index] = Stack[*stack_index];
   Stack[*stack_index] = num_cand - 1;

   // And we must update our edge counts according
   // to the new element we just added into or A path-cycle.
   out_vert_index = A[*A_index];
   for (i=1; i<= m_Vert[out_vert_index].m_Degree; i++)
   {
      cur_nhbr = m_Vert[out_vert_index].m_Nhbr[i];
      m_Vert[cur_nhbr].m_NumNhbrsLeft--;
   }

   if (*A_index == stop_len)   // Check if we are done
   {
      *state = 1;
      return 1;
   }
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   *A_index = *A_index + 1;
   *state = 2;
   return 2;

} // end BackTrackMinOnly

////////////////////////////////////////////////////////////////////////////
// HamCycleMinOnly   (more code converted from Fortran)
//
// This function is similar to HamCycle, except we screen out some
// of the vertices we put on the candidate stack based on
// how many nhbrs they have remaining, the fewer, the better.
//
// Note: if we ever get to a point where all the (unvisited) nhbrs have
// exactly 2 nhbrs remaining, we know we are screwed. There is no further
// reason to follow this path. (Unless one of them is the start/end pt)
// We do NOT currenly check this.
//
// num_verts = number of vertices in graph G
// A => A(i) is the i-th vertex in the current circuit
// A_index = index of the next step on the current partial circuit
// stack_index = current length of stack i
// stack = candidates for steps 1 to k-1
// nstk = maximum length of stack
//
// m_AdjMat[][] => if (m_AdjMat[i][j] = 1) then edge (i, j) is in G
//
// Purpose: Find the candidates for k-th vertex in Ham. cycle
// store them in stack and update m accordingly
//
// I try to return what m is set to.
//
////////////////////////////////////////////////////////////////////////////
long CGraph::HamCycleMinOnly(long num_verts, long A[GRAPH_MAXVERT+1],
                             long A_index, long *stack_index,
                             long Stack[GRAPH_STACK_MAX+1], long nstk)
{
   long vert[GRAPH_MAXVERT+1];  // temp storage of what verts adj. to A[k-1]
   long i;                      // standard looping index
   long k1, a1, m1;
   long min_num_nhbrs, nhbr_vert;

   if (A_index == 1)
   {
      Stack[1] = 1;  // put vert 1 first
      Stack[2] = 1;  // then there is 1 element in that section of the stack
      *stack_index = 2;
      return 2;
   }

   // Find ALL the verts adjacent to A[A_index-1]
   k1 = A_index - 1;
   a1 = A[k1];
   for (i=1; i <= num_verts; i++)
   {
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      vert[i] = m_AdjMat[a1][i];
   }

   // Make sure we remove all verts we have previously visited.
   for (i=1; i<= k1; i++)
   {
      m1 = A[i];
      vert[m1] = 0;   // 0 = false, 1 = true
   }

   // Now find those with the least number of nhbrs remaining
   // a1 = A[A_index-1] = current vertex index
   min_num_nhbrs = 99999;
   for (i=1; i< m_Vert[a1].m_Degree; i++)
   {
      nhbr_vert = m_Vert[a1].m_Nhbr[i];
      // if the nhbr is still in vert we see if its nhbrs are minimal
      if (vert[nhbr_vert])
      {
         if (m_Vert[nhbr_vert].m_NumNhbrsLeft < min_num_nhbrs)
         {
            min_num_nhbrs = m_Vert[nhbr_vert].m_NumNhbrsLeft;
         }
      }
      // if the nhbr is NOT minimal, throw it out of the viable candidate stack
      // Doing this check here would leave some "large" candidates
      // if (m_Vert[nhbr_vert].m_NumNhbrsLeft > min_num_nhbrs)
      //    vert[nhbr_vert] = 0;
   } // end for
   for (i=1; i< m_Vert[a1].m_Degree; i++)
   {
      //nhbr_vert = m_Vert[a1].m_Nhbr[i];   // this line appeared to be missing
                                            // with addition of this line things fail
      if (m_Vert[nhbr_vert].m_NumNhbrsLeft > min_num_nhbrs)
      {
         vert[nhbr_vert] = 0;
      }
   } // end for

   m1 = *stack_index;
   if (A_index != num_verts)
   {
      for (i=1; i<= num_verts; i++)
      {
         if (vert[i] == 1)
         {
            m1 = m1 + 1;
            Stack[m1] = i;
         }
      } // end for
      Stack[m1+1] = m1 - (*stack_index);
      *stack_index = m1 + 1;
      return (m1 + 1);
   }  // end if k != num_verts

   for (i=1; i <= num_verts; i++)
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   {
      if (vert[i])
      {
         if (!m_AdjMat[i][1])
         {
            Stack[m1+1] = m1 - (*stack_index);
            *stack_index = m1 + 1;
            return (m1+1);
         }
         *stack_index = *stack_index +2;
         Stack[*stack_index - 1] = i;
         Stack[*stack_index] = 1;
         return (*stack_index);
      }
   } // end for

   Stack[m1+1] = m1 - (*stack_index);
   *stack_index = m1 + 1;

   return (m1+1);

} // end HamCycleMinOnly
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Below is the code used to implement method 2 (modified)

/////////////////////////////////////////////////////////////////////////////
// FindQuickShoot
//
// Similar to FindCycle()
// however we also implement:
// 1. we also should now have a check that if we come to a vertex who
//    has TWO or more unvisted nhbrs each with only 2 nhbrs remaining
//    (counting the one we are at) then we back up a step.
//    This is based on the scenario:
//
//    a ------ b  ------ c
//    |
//    |
//    d ------ e
//
//    Say we are at a, if we go to b then eventually we must
//    visit d and there is no way to leave d, so we would
//    be done, so we abort early to save time.
//    (of course neither b nor d = start/end vertex as that has
//     already been visited)
//    The downside is we must check that neither b nor d is a nhbr
//    of the start vertex. If one is the nhbr of start, then we
//    go to the one that is not (remove the option of going to the
//    one that is)
//
// It is in the quick routines we first introduce member variable
// m_StartCycle in function HamCycleQuick(...)
//
// A clever, well maintained, data structure can give you
// glimpses of the future.
//
/////////////////////////////////////////////////////////////////////////////
long CGraph::FindQuickShoot()
{
   FILE *out_file;
   long A[GRAPH_MAXVERT+1];      // the cycle, coded by vertex index
   long stack[GRAPH_STACK_MAX+1];
   long index, k, m, nstk;
   long i2, count;
   long vert_index;
   long adj_ok;

   // Init the A and stack
   printf("Initializing variables...\n");
   for (index=0; index < GRAPH_MAXVERT+1; index++)
   {
      A[index] = 0;
   }
   for (index=0; index < GRAPH_STACK_MAX+1; index++)
   {
      stack[index] = 0;
   }
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   // Guarantee our adjacency matrix is up to date
   printf("Creating Adjacency Matrix...\n");

   adj_ok = SetAdjMat();
   if (!adj_ok)
   {
      printf("ERROR (FindCycle):\n");
      printf("Unable to create adjacency matrix.\n");
      return 0;
   }

   out_file = fopen("ham.txt", "w");
   printf("Writing to ham.txt\n");

   printf("Beginning to look for Ham. Cycles...\n\n");
   printf("Using QuickShoot routines.\n\n");
   fprintf(out_file, "\nHamHer, number of vertices = %ld\n", m_NumVerts);
   fprintf(out_file, "Using QuickShoot routines.\n\n");
   PrintTime(out_file);
   printf("\n");
   fprintf(out_file, "\n");
   fprintf(out_file, "========================================================\n");

   count = 0;         // count keeps track of how many ham. cycles found

   nstk = GRAPH_STACK_MAX;
   index = 0;

   // num_verts = length of expected cycles
   // index = 0 should set k = 1, m = 0 on first call to BackTrack

   // BackTrack(...) sets
   // index = 1 for successfully done,
   // index = 3 means  no more vectors of type sought
   // index = 2 for call HamCycle

   // Choose our first starting vertex:
   m_StartCycle = 1;

   while (index != 3)
   {
      BackTrackQuick(m_NumVerts, A, &index, &k, &m, stack, nstk);
      if (index == 2)
      {
         HamCycleQuick(m_NumVerts, A, k, &m, stack, nstk);
      }
      else if (index == 1)  // found a cycle, print it
      {
         count++;           // count = total number of cycles found
         printf("C%ld: ", count);
         fprintf(out_file, "C%ld: ", count);

         // Print out the vertex indices
         for(i2=1; i2<= m_NumVerts; i2++)
         {
            printf("%ld\t",A[i2]);
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            fprintf(out_file, "%ld\t",A[i2]);
         }
         printf("\n");
         fprintf(out_file, "\n");

         // Print out the actual vertex identifying strings
         for(i2=1; i2<= m_NumVerts; i2++)
         {
            vert_index = A[i2];
            printf("%s\t", m_Vert[vert_index].m_AssocStr);
            fprintf(out_file, "%s\t", m_Vert[vert_index].m_AssocStr);
         }
         printf("\n");
         fprintf(out_file, "\n");
         printf("\n");
         fprintf(out_file, "\n");
         PrintTime(out_file);
         fprintf(out_file, "----------------------------------------------------------\n");
      }
   } // end while index !=3 (i.e. we are not done)

   printf("\nDone.\n\n");
   fprintf(out_file, "\nDone.\n\n");
   PrintTime(out_file);
   fprintf(out_file, "========================================================\n");
   printf("\n");
   printf("Total number of Hamiltonian cycles found: %ld\n", count);
   printf("Note: depending on how the graph was set up there might\n");
   printf("be only half that number (or fewer) which are 'distinct.'\n");
   printf("\n");

   fclose(out_file);
   return 1;
} // end FindCycleQuick

////////////////////////////////////////////////////////////////////////////
// BackTrackQuick
//
// Just like backtrack but we only choose the vertices with the
// MINIMUM number of nhbrs remaining.
// This may not find ALL cycles but it has a good chance of finding ONE.
//
// stop_len is the desired length of the a complete output vector
// A is the output vector
// On entry:
// state = 0 for just starting
// state = 2 for keep going     (shouldn't ever be 1 or 3 on entry)
//    BackTrack(...) sets
//    state = 1 for successfully done, (size of A equals stop_len)
//    state = 3 means  no more vectors of type sought
//    state = 2 for call HamCycle
// A_index is the length of a partially constructed vector:
//         a call to HamCycle() is a request for position A[A_index];
//         A_index is set by BackTrack()
// stack_index is the location of the last item on the stack;
//         it is changed by both BackTrack() and HamCycle()



Dingle 1998 24

// stack is a linear array, of maximal length nstk, whose appearance
//    at a typical step is:
// z z z z z z z n1 z z z z z n2 z z z z n3 z z...
// \___________/    \_______/
//     \/               \/
//  n1 candidates      n2 candidates
//  for position       for position      etc
//     A(1)              A(2)
//
// i.e. let the lists of candidates for A(1),...,A(A_index-1), A(A_index)
// be stored in stack[], each list followed by its length
//
// Return the value should = state's new value.
// (this was translated from Fortran code, so indices start at 1)
// (and code is UGLY!)
//
////////////////////////////////////////////////////////////////////////////
long CGraph::BackTrackQuick(long stop_len, long A[GRAPH_MAXVERT+1],
                            long *state, long *A_index, long *stack_index,
                            long Stack[GRAPH_STACK_MAX+1], long nstk)
{
   long num_cand, done;
   long out_vert_index, cur_nhbr;
   long i;

   if (*state == 0)
   {
      *A_index = 1;
      *stack_index = 0;
      *state = 2;

      return 2;
   }

   done = 0;
   while (!done)
   {
      num_cand = Stack[*stack_index];
      *stack_index = *stack_index - 1;

      if (num_cand != 0)
      {
         done = 1;
      }
      else  // if (num_cand == 0)
      {
         // So we are going to pop off an element from A
         // by decrementing A_index.
         // In the process we need to update our edge counts
         out_vert_index = A[*A_index];
         for (i=1; i<= m_Vert[out_vert_index].m_Degree; i++)
         {
            cur_nhbr = m_Vert[out_vert_index].m_Nhbr[i];
            m_Vert[cur_nhbr].m_NumNhbrsLeft++;
         }
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         *A_index = *A_index -1;
         if (*A_index == 0)
         {
            *state = 3;   // ran out of options, so fail
            return 3;
         }
      }
   } // end while !done

   // Now we pop off one of the elements and run with it.
   // It is assumed that HamCycleMinOnly put only those
   // vertices with the fewest remaining edges.
   A[*A_index] = Stack[*stack_index];
   Stack[*stack_index] = num_cand - 1;

   // And we must update our edge counts according
   // to the new element we just added into or A path-cycle.
   out_vert_index = A[*A_index];
   for (i=1; i<= m_Vert[out_vert_index].m_Degree; i++)
   {
      cur_nhbr = m_Vert[out_vert_index].m_Nhbr[i];
      m_Vert[cur_nhbr].m_NumNhbrsLeft--;
   }

   if (*A_index == stop_len)   // Check if we are done
   {
      *state = 1;
      return 1;
   }

   *A_index = *A_index + 1;
   *state = 2;
   return 2;

} // end BackTrackQuick

////////////////////////////////////////////////////////////////////////////
// HamCycleQuick   (more code converted from Fortran)
//
// This function is similar to HamCycle, except we screen out some
// of the vertices we put on the candidate stack based on
// how many nhbrs they have remaining, the fewer, the better.
//
// Note: if we ever get to a point where all the (unvisited) nhbrs have
// exactly 2 nhbrs remaining, we know we are screwed. There is no further
// reason to follow this path. (Unless one of them is the start/end pt)
// We do NOT currenly check this.
//
// num_verts = number of vertices in graph G
// A => A(i) is the i-th vertex in the current circuit
// A_index = index of the next step on the current partial circuit
// stack_index = current length of stack i
// stack = candidates for steps 1 to k-1
// nstk = maximum length of stack
//
// m_AdjMat[][] => if (m_AdjMat[i][j] = 1) then edge (i, j) is in G
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//
// Purpose: Find the candidates for k-th vertex in Ham. cycle
// store them in stack and update m accordingly
//
// I try to return what m is set to.
//
////////////////////////////////////////////////////////////////////////////
long CGraph::HamCycleQuick(long num_verts, long A[GRAPH_MAXVERT+1],
                           long A_index, long *stack_index,
                           long Stack[GRAPH_STACK_MAX+1], long nstk)
{
   long vert[GRAPH_MAXVERT+1];  // temp storage of what verts adj. to A[k-1]
   long i;                      // standard looping index
   long k1, a1, m1;
   long min_num_nhbrs, nhbr_vert;
   long number_with_2;

   if (A_index == 1)
   {
      Stack[1] = m_StartCycle;  // put vert m_StartCycle first
      Stack[2] = 1;  // then there is 1 element in that section of the stack
      *stack_index = 2;
      return 2;
   }

   // Find ALL the verts adjacent to A[A_index-1]
   k1 = A_index - 1;
   a1 = A[k1];
   for (i=1; i <= num_verts; i++)
   {
      vert[i] = m_AdjMat[a1][i];
   }

   // Make sure we remove all verts we have previously visited.
   for (i=1; i<= k1; i++)
   {
      m1 = A[i];
      vert[m1] = 0;   // 0 = false, 1 = true
   }

   // Now find those with the least number of nhbrs remaining
   // a1 = A[A_index-1] = current vertex index
   min_num_nhbrs = 99999;
   number_with_2 = 0;    // we shall count how many nhbrs are viable candidates
for (i=1; i< m_Vert[a1].m_Degree; i++)
   {
      nhbr_vert = m_Vert[a1].m_Nhbr[i];
      // if the nhbr is still in vert we see if its nhbrs are minimal
      if (vert[nhbr_vert])
      {
         if (m_Vert[nhbr_vert].m_NumNhbrsLeft < min_num_nhbrs)
         {
            min_num_nhbrs = m_Vert[nhbr_vert].m_NumNhbrsLeft;
            // The below if was also some bizarre coding error
            // which allowed the first solution to the 7 case
            // to be found in about 7 seconds
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            // With it we did miss 1 of the 48 solutions to n = 5
            // Probably because we don't check that the nhbr with
            // 1 is also nhbr of start vertex
            // This if should be technically correct, though
            // it makes the variable names misleading.
            if (min_num_nhbrs == 2)
            {
               number_with_2++;
            }
         }
         if (m_Vert[nhbr_vert].m_NumNhbrsLeft == 1)
         {
            if (!m_AdjMat[nhbr_vert][m_StartCycle]) // if nhbr is not also a nhbr of start vert
            {
               number_with_2++;                     // we count it
            }
         }
      }  // end if vert. was originally still viable
   } // end for
   if ((min_num_nhbrs == 1) && (number_with_2 > 1))   // we dead end this vertex now
   {
      for (i=1; i <= num_verts; i++)
      {
         vert[i] = 0;
      }
   }
   else if (min_num_nhbrs == 1)  // we MUST go to that nhbr, remove all other possibles
   {
      for (i=1; i< m_Vert[a1].m_Degree; i++)
      {
         nhbr_vert = m_Vert[a1].m_Nhbr[i];
         if (m_Vert[nhbr_vert].m_NumNhbrsLeft > min_num_nhbrs) // > 2
         {
            vert[nhbr_vert] = 0;
         }
      } // end for
   }

   m1 = *stack_index;
   if (A_index != num_verts)
   {
      for (i=1; i<= num_verts; i++)
      {
         if (vert[i] == 1)
         {
            m1 = m1 + 1;
            Stack[m1] = i;
         }
      } // end for
      Stack[m1+1] = m1 - (*stack_index);
      *stack_index = m1 + 1;
      return (m1 + 1);
   }  // end if k != num_verts

   for (i=1; i <= num_verts; i++)
   {
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      if (vert[i])
      {
         if (!m_AdjMat[i][1])
         {
            Stack[m1+1] = m1 - (*stack_index);
            *stack_index = m1 + 1;
            return (m1+1);
         }
         *stack_index = *stack_index +2;
         Stack[*stack_index - 1] = i;
         Stack[*stack_index] = 1;
         return (*stack_index);
      }
   } // end for

   Stack[m1+1] = m1 - (*stack_index);
   *stack_index = m1 + 1;

   return (m1+1);

} // end HamCycleQuick

c’est fini.

- BMD


