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Abstract 
This paper will present a way to use keyframing methods of particle motion to enhance the visual effects and 
user controllability of physically based particle systems. This will be done using an adaptive correction 
methodology. This will allow for three general types of keyframing: position to position, density to density, 
and boundary to boundary. While similar techniques have been explored in flocking behaviors and robotic 
motion planning, this paper implements them in conjunction with physically based systems and allows a 
comparison of particle based keyframing to those achieved using other methodologies. To illustrate the 
technique we will present two examples. The first morphs between two particle images. The second forces a 
smoke-like substance to change into various letters of the alphabet. While these are specific examples the 
techniques presented herein should apply to most any particle based system to achieve a diverse range of 
effects. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling – Physically based modeling, I.3.6 [Computer Graphics]: Methodology and 
Techniques – Interaction techniques and I.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism – Animation. 

 
 
 
 

1   Introduction 
 
In 1983 a method to model substances such as fire, water, 
clouds and smoke was presented in [Ree83]. One of the 
major advantages of this technique was the physical realism 
it allowed. However, human imagination is boundless and 
we often wish to create very artistic effects from such 
substances. For example we might wish to form letters 
from smoke, or form faces out of sand, or perhaps we 
simply wish to creatively dissolve images. Of course, we 
also wish to maintain a degree of physical realism in the 
process. Particle systems would seem to be a natural choice 
for achieving these artistic effects. However no general 
framework for realizing these effects has been presented for 
use with physically based particle systems. 
 
   Thus the goal of this paper is to present a general method 
to allow users to create artistic effects with particle 
systems, while maintaining a degree of physical realism. 
Specifically, we are proposing keyframing the position, 
velocity, density, orientation and color of the particles to be 
at a specific state at a specific time. Between keyframes 
and when no keyframe is active, the particles are subjected 
to physically based forces. The purpose of this is to allow 
more control over the visual effects produced by the 
particle system, while still maintaining a certain amount of 
physical realism.  
 

   We begin with a simple method of keyframing the 
position of every particle. We will then demonstrate how 
this basic method may be expanded to achieve more robust 
keyframing, such as density to density and boundary to 
boundary methods. As we present these methods, two 
examples of application will be illustrated. We will 
conclude with possible directions of further expanding 
these keyframing methods. For example by introducing a 
plausibility test of the generated paths. 
 
The advantages offered by this technique are: 

• Gains in user controllability. 
• An increase in speed if implemented in parallel 

environments [Sim90] or on the graphics 
processing unit [KSW04]. 

• User controlled plausibility testing of the paths 
generated.  

• Generality to be applied to most any particle 
based simulation. 

• Particles move “naturally” until a keyframe 
becomes active. 

 
 
2   Previous Work 
 
Particle systems have been used in many ways. In computer 
graphics they often represent fuzzy or poorly defined 



objects such as gases and liquids [Ree83, ECP94, Sta99, 
YOH00, FSJ01]. They have also been used to model cloth 
[BHW94, BW98, CK02] and other deformable objects 
[TW88, CMN97, BCDD00]. Expanding upon that they can 
be used  to model surfaces [PZVG00] and generate surface 
textures [Tur91].  
 
   While effects similar to those presented in this paper have 
been previously achieved, no general presentation of how 
they were achieved has ever been offered. There has been 
work done by others that might suggest such methods 
[ACM03], but none have specifically applied or discussed 
the methods with respect to physically based particle 
systems.  
 
   It is also noted that many rendering systems offer particle 
based effects. These systems often refer to keyframing 
particle effects. However, the keyframing they refer to does 
not involve the states of the individual particles, but rather 
the state and motion of the particle emitters. Effectively 
they are referring to sequencing the timing and positioning 
of particle effects. In a few of these systems it is possible to 
assign a goal for particles, however, it is only possible to 
assign one goal and other forces, specifically conditional 
forces, cannot be applied to the individual particles. Further 
the goals cannot be turned off or randomized for each 
particle. In the end, it may be possible to implement the 
keyframing methods we will present on existing rendering 
systems, however the methods themselves are not inherent 
to any such system. 
 
   Also related to this paper is the recent work on 
keyframing the motion of smoke [TMPS03, FL04] as well 
as more general animation techniques involving 
keyframing concepts [Ree81, SB85, Las87]. None of these 
applied keyframing techniques directly to particle states. 
So, while we are certainly using similar ideas, we will show 
how to apply them to particles in general. 
 
 
3   Basic Method, Position to Position 
 
The most straightforward method to keyframe particles is 
to specify each particle’s initial and target position (or 
state).  The difficulty is maintaining the natural behavior of 
the substance being modeled by the particles, while at the 
same time forcing it to do something very unnatural. With 
this in mind, if we are given an initial position and a final 
position for each particle and a set of external forces acting 
on the particle then it is possible to achieve an automatic 
‘in-betweening’ of the keyframes using a simple process. 
 
   So, assume we are given the initial position of a particle, 
p0, which occurs at time t0, and the next position of the 
particle pn, which occurs at time tn. We are also given a 
constant time step of ∆t ≤ tn - t0, that will be used 
throughout the simulation and a list of forces that will act 
on the particle. With this information we are able to derive 
a force for each time step that will apply the given forces to 
the particle and guide the particle to its final destination. It 
should be noted that keyframes are not always active and 

we need not run from one keyframe to another, thus the 
particles may have periods of free motion. 
   For a given time step, i, let the current time be denoted ti 
and let the sum of the forces acting on the particle be 
denoted by Fi. For the same time step let fi denote the force 
that if applied for the remaining time of tn - ti = ∆ti would 
move the particle from its current position, pi, to its final 
location, pn, disregarding Fi.  
 

 
 

Figure 1: Two calculated forces acting on a particle. 
 
 
   This would give the total force acting on the particle to 
be: (Fi + fi)∆t. However, this would not guarantee that the 
particle would ever reach its target position pn. To make 
such a guarantee a scaling or weighting function, si, must 
be introduced. Thus the force acting on the particle would 
be: (si Fi + fi)∆t. 
 
   For simplicity we shall use a linear scaling function to 
define si = ∆ti /(tn – t0). This is not the best function for all 
cases, and others could be used. This scaling term will 
automatically diminish the effect of Fi. Notice the effect of 
fi is inherently diminishing as the particle gets closer to its 
target, however, it may also be explicitly weighted if 
necessary. Further if we wanted each particle to behave 
differently a degree of randomness may be introduced by 
multiplying si by a random scalar ri ∈ (0, 1]. 
 

 
Figure 2: Motion by scaled force sum for ith time step. 

 
 
   Having calculated the forces Fi and fi and the scaling 
term si, we move the particle for the ith time step by 
applying a force of (si Fi + fi)∆t.   
 
 

 
 

Figure 3: An imaging dissolving under gravity. 
 
 



   This position to position method was used to morph one 
image into another, as illustrated in figures 3 and 4. This 
morph began by initializing the particles so they displayed 
their image. They were then subjected to a variety of 
physically based forces, without any keyframing. After a 
certain amount of time passed, a keyframe became active 
guiding them back into a form that would display their 
contained image. Within this morphing a timely change of 
particle coloring was also implemented. This demonstrates 
a feature of this method by showing the particles need not 
move directly from one keyframe to another. 
 

 
 

Figure 4: An image reforming via keyframe forces. 
 
 
4.  Density to Density Keyframes 
 
Explicit position to position keyframes are limited in their 
use, because user specification of target goals for every 
single particle can become problematic. However there are 
many algorithms that employ the use of density and 
velocity functions, for example those used to model fluids 
or gases [EP90, Sak90, FM96, FSJ01]. The effects of these 
methods are impressive, however, they can take some time 
to simulate and render and do not inherently allow much 
control of the visual effect. Recent effort has been made to 
remedy this. For example, it is now possible to control the 
motion of smoke and similar substances [TMPS03, FL04] 
on grid based simulators. However, these were not particle 
based effects. 
 
   Because there are scenarios where the motion of the 
density of a substance is being considered it is useful to 
have the ability to keyframe particles based on area, or 
volume, densities. From a user perspective, this means 
moving a given number of particles from one area to 
another. Exactly which particles get moved where is no 
concern as long as the necessary number of particles ends 
up in the correct area. While this could be from multiple 
areas to multiple areas, for a simple presentation we will 
limit the scenario to a case of one source area and one or 
more target areas. 
 
   It should be emphasized that in this form of keyframing 
the shape of the source and target areas is of no concern. 
Only the number of particles is of any significance. Further 
while the word area is used in the descriptions the word 
volume equally applies. For additional simplicity we 
assume each mentioned area is of the same size. Thus 
densities are more directly identified by the number of 
particles in each area. 

 
   For density to density keyframing we are not concerned 
with which particles go where. Rather we want to move a 
given number of them from one area to another in the hope 
to simulate a density flow pattern. To achieve this the task 
is broken into three parts: particle selection, destination 
calculation and path generation. To implement this we say 
there exists a function for each part of the task. To 
demonstrate simple versions of these functions we make 
some assumptions. Among these are: there exist no inter-
particle relationships and there is only one source area. If 
these assumptions are not true, more complicated functions 
may be used, and even if they are true, other functions may 
perform better in given scenarios. Yet the following 
worked for our scenarios. 
 
   Before creating the paths of particles involved in density 
to density keyframes it is necessary to identify which 
source particles will move to which target areas. Assuming 
we have only one source and one target area, this is trivial. 
If there is one source and two target areas, where the 
density of each target is half that of the source, it is easy to 
randomly select half of the source particles and assign them 
to the first target area and the other half to the second target 
area. This readily extends to three or more target areas and 
can be adapted to work if there are multiple source areas. 
However, if there are relationships between the particles 
themselves or other such considerations, then other 
selection methods may be used. Notice also that the source 
area must have a density great enough to support the target 
densities. 
 
   Once the source particles are selected and assigned to 
target areas it is necessary to determine where in the target 
area they will go. Obviously they could all go to the same 
location in the target area. However, that is usually not 
desired.  
 
   To determine the target location of each particle we begin 
with a coarse estimate based on a center of mass concept. If 
the particles are extremely dispersive in nature a refinement 
may be necessary. 
 
   To generate a coarse path we use a center of mass 
concept. To illustrate this consider the case where there is 
only one source area and one target area. The center of 
mass of the source area and target area is calculated. The 
simulation then runs forward. At each time step the center 
of mass of the particles is recalculated. The position to 
position keyframing is performed on the center of mass of 
the particles to obtain the fi that will be applied to all the 
particles. The Fi is still unique to each particle. This allows 
a performance gain by reducing the number of fi 
calculations, however if the particles are extremely 
dispersive in nature, or the relative size of areas involved is 
significantly different, the particles may not all end in the 
target area, which would require a refinement of the path. 
This need for refinement would require a detection method, 
such as the plausibility test described in section 6. 
 
   To refine the path we subdivide the particles based on 
their locations at each time step. This division is done using 



an adaptive kd-tree algorithm, where the divisions increase 
in number as the time approaches tn. We then perform the 
same center of mass path planning as described above on 
each division. If necessary, this progresses down until each 
division contains only one particle. Thus, eventually, a path 
ending with the desired density in the target area is 
guaranteed. 
 
   This center of mass concept may be skipped. However 
doing so may slow the simulation. Should that not matter 
the easiest method for density to density keyframing is 
again to rely on randomness, and assign each source 
particle a random location in its target area. Once each 
particle is assigned a destination, its path is generated as 
described in the position to position keyframing. Again, if 
there are interparticle relationships to be maintained, or 
other restrictive considerations, then other target 
assignment methods may be used, but the method of path 
generation stays the same. 
 
 
5. Boundary to Boundary Keyframes 
 
Boundary to boundary keyframes are the most visually 
interesting of the methods. With this keyframing ability we 
can form many entertaining effects. Examples of such 
effects are illustrated in figures 5 and 7. 
 

 
 

Figure 5: The letter S formed by 6000 particles. 
 
 
For boundary to boundary keyframing we duplicate the 
processes used in density to density keyframing. However 
we remove the option of using a center of mass concept as 
we must guarantee the particles generate the desired shape. 
To do this we require a specific destination to be assigned 
to each particle based on a uniform random assignment of 
positions within the target boundary. More explicitly we 
again break the task into three parts: particle selection, 
destination calculation and path generation.  
 
The particle selection method remains the same as in the 
density to density case. However the destination 
assignment while still random, must now be uniformly 
random within the target boundary. The path generation 

function remains the same, however, the center of mass 
concept can no longer be used. Thus fi must be calculated 
for each particle. 

 
 

Figure 6: A square morphing into a triangle. 
 
   An expansion of this method also exists using current 
morphing techniques. Assuming the source and target 
boundaries are both closed then it is possible to create a 
morph between them [SG92]. From this we may obtain an 
intermediate boundary shape for each time step and we 
may confine the movement of the particles to stay within, 
or near, these intermediate boundaries. This confinement is 
enforced by the plausibility testing described in the next 
section. This usually produces a smoother transition.  
 

 
 

Figure 5: Howdy forming from a ball of  smoke. 
 
 
6   Plausibility 
 
In all three keyframing methods there must be a concern for 
the plausibility of the paths the particles follow. Thus, once 
a path is generated its plausibility should be measured. This 
concept is well explained in [ACM03], and we will be 
modifying and adding to some of their results to be applied 
to physically based systems.  
 
   While we could approach plausibility as an optimality 
problem and apply techniques similar to those in [BN88, 
Coh92] for visual effects we do not necessarily want the 
most optimal solution and will likely desire some 
randomness to remain or be introduced in the motion. To 
accomplish this we will stray from the optimality methods 
and introduce a random scalar ri ∈ (0, 1] and offer a change 
of the equation presented in section 3, where the total force 
was: (siFi + fi)∆t, it now becomes: (risiFi + fi)∆t. Other 
randomization techniques may also be applied or specified 
by the user. Likewise the fi term could be randomly scaled, 
however that removes the guarantee of hitting the target 
positions. This randomness allows multiple paths to be 
generated from the same algorithm. This should change the 
paths enough that some will be better than others. 



 
   It should be noted that technically the entire path from 
one keyframe to the next must be calculated to truly judge 
the plausibility of the path. To do this, speculative paths 
must be generated fast enough to not delay the visual 
display. However the activation and duration of keyframes 
is user specified. To reduce the runtime we do not always 
judge the plausibility of the entire path, but just a small 
subsection going only a few time steps ahead of the current 
time. The exact number of time steps is left as a parameter 
to the user. If that number amounts to a time greater than 
the largest active keyframe duration, then the plausibility of 
the entire path will be performed for all keyframes. While 
that should generate better paths it is not required and may 
slow the runtime performance. 
 
   The process of generating paths and testing their 
plausibility is performed until a user specified level of 
plausibility is achieved or a given number of attempts is 
exhausted. 
 
6.1   Plausibility Criteria 
 
For our simulation methods, the plausibility is a measure 
based on: 

• d = the distance of particles from their target 
positions, 

• p = the viability of the particle positions, 
• v = the ratio of the magnitudes of the velocity of 

the particles between time steps. 
 
   This plausibility is comparative in nature so the first path 
generated will always be accepted, but may be replaced by 
successively generated paths. To express this we will 
follow notation similar to that presented in [AMC03]. 
However we will be testing individual particle paths, not all 
the paths all at once. So, letting g(candidate path) be the 
plausibility rating of a newly generated path and g(current 
path) be the plausibility rating of the currently chosen path 
then the probability of choosing the new path over the 
currently chosen path is: 
 

Paccept = g(candidate path) / g(current path) 
 
This allows the new path to be chosen if Paccept is greater 
than a user specified value. 
 
   For a given path we will define three functions; g(d), g(p) 
and g(v) such that g(path) = g(d)*g(p)*g(v). The details of 
each of these functions is described below. 
 
   It is important to understand these are only suggested 
criteria. Other measures of plausibility may be used as 
needed. Notice also each plausibility test is across only a 
small number of time steps, possibly one or perhaps the 
entire time from initial state to keyframe state. The number 
of time steps being considered will determine how reliable 
the plausibility test is. 
 
 
6.2   Distance Plausibility 
 

The distance plausibility of a path, g(d) is a measure of how 
close the particles are to their target states. In density to 
density keyframes this may be applied to the center of mass 
rather than individual particles. In every method it is 
defined as: 
 

g(d) = 
2( [ ]) ( [ ]) / 21

2
dPos part i Dest part i

d

e σ

σ π
− −

 

 
where part[i] is the particle indexed by i, Pos(part[i]) is the 
current position of part[i], Dest(part[i]) is the target 
position of part[i] and σd is a small user defined constant, 
0.1 to 0.5 should work. This is similar to the center of mass 
measure presented in [ACM03], though it is being used a 
little differently here. Other measures should also work. 
 
6.3   Viability Plausibility 
 
The plausibility of the viability of the ending particle 
position of a path is a measure of whether the particle can 
be or should be in that location. Thus it is defined as two 
functions:  

g(p) = hc*hs. 
 
   The “can be” part of the measure, hc, is a Boolean 
function. If at any time of the path being considered, the 
particle is sitting somewhere that it cannot be, such as 
inside another object, hc = 0, otherwise hc = 1. Other 
criteria for this may be used, and the function need not be 
Boolean, however for our purposes this was sufficient. 
 
   The “should be” part of the measure, hs, only applies in 
the case of a boundary to boundary morphing keyframe and 
is a function of the square distances of the particles from 
their temporary target locations. This is defined as: 
 

hs =  * ( [k sqrdist part ie− ])

 
where k is a user supplied constant and sqrdist(part[i]) is 
the distance squared from part[i] to its target destination. 
Values between 5 and 20 work well for k. This is similar to 
the shape measure presented in [ACM03]. However the hc 
term is unique to this paper and our points of distance 
measure for hs are different. 
 
 
6.4   Velocity Plausibility 
 
The plausibility of the magnitude of the velocity of the 
particles, g(v), is necessary to achieve a visual smoothness 
in motion. This measure is unique to this paper. For one 
time step 

f(v) = 

* ( [ ]) ( [ ])

( [ ])
c p

p

c vel part i vel part i

vel part ie
− −

 
 
where velp(part[i]) is the velocity of part[i] on the previous 
time step, velc(part[i]) is the current velocity and c is a user 
defined constant. Values near 1 should work well for c. 



From this g(v) is the product of all f(v) across all the time 
steps used to generate the path: 
 

 g(v) = f(v) 
_ _all time steps
∏

 
 
7.   Conclusion and Future Work 
 
We have now described three keyframing methods 
applicable to physically based particle systems. These 
methods should be easy to implement and incorporate in 
already existing systems. The methods may be combined to 
achieve a variety of effects. In such a combination the 
priority of each effect must be determined in the path 
generation. It is recommended to give position to position 
the highest priority and density to density the lowest. 
However it could be left to the user to specify. 
 
   The majority of the discussion above is dealing with just 
the position of the particles. This is mostly for 
understandability. The ideas presented can be applied to 
any state variable of the particles, such as color, 
transparency, rotation, velocity, etc. 
 
   In a similar fashion the criteria and weighting functions 
we have chosen are for demonstration, they are not the only 
choices. It might also be possible to achieve the same 
results using other methods. For example, while we are 
considering velocity directly as a plausibility criteria it may 
also be controlled by using smaller time steps or increasing 
the time between keyframes. However for consistency 
within this method we treat it as a plausibility criterion. 
 
   We note the visual appeal of particle effects does not 
meet everyone’s standards. However, these are realtime 
effects, and are likely to be made faster with the 
advancement of GPU programming techniques. Further 
these methods need only be used to prototype an effect 
after which more advanced techniques and a larger amount 
of time could then be dedicated to final renderings. 
 
   In conclusion, it should be obvious that implementing this 
method would allow for greater user control of physically 
based particle effects. While the concept of plausibility has 
been presented by others, we have shown that it can work 
within this general, physically based framework. Further, 
we have offered a way the user may control how well the 
plausibility tests perform. This is allowed not only by 
setting the parameters of tests, but also by setting for what 
time length of a path they will be applied. In all of this we 
have been integrating the usage of keyframe constraints 
with physical forces. There is no reason these forces need 
to be reality based and the method should work for any set 
of external forces or rules of motions. Of importance is that 
the particle motion is not always keyframed; the particles 
may behave “normally” until a keyframe becomes active. 
Implementing such a method will allow for a myriad of 
effects to be obtained not currently attainable in as easy of 
a fashion. 
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