
Early Draft (preprint) of a paper presented at the Theory and Practice of Computer Graphics (TPCG) 2005.
The actual published paper contains better illustrations and presentations of some of the concepts.

Keyframing Particles of Physically Based Systems

Brent M. Dingle
Texas A&M University

John Keyser
Texas A&M University

Abstract
This paper will present a way to use keyframing methods of particle motion to enhance the visual effects and
user controllability of physically based particle systems. This will be done using an adaptive correction
methodology. This will allow for three general types of keyframing: position to position, density to density,
and boundary to boundary. While similar techniques have been explored in flocking behaviors and robotic
motion planning, this paper implements them in conjunction with physically based systems and allows a
comparison of particle based keyframing to those achieved using other methodologies. To illustrate the
technique we will present two examples. The first morphs between two particle images. The second forces a
smoke-like substance to change into various letters of the alphabet. While these are specific examples the
techniques presented herein should apply to most any particle based system to achieve a diverse range of
effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – Physically based modeling, I.3.6 [Computer Graphics]: Methodology and
Techniques – Interaction techniques and I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism – Animation.

1 Introduction

In 1983 a method to model substances such as fire, water,
clouds and smoke was presented in [Ree83]. One of the
major advantages of this technique was the physical realism
it allowed. However, human imagination is boundless and
we often wish to create very artistic effects from such
substances. For example we might wish to form letters
from smoke, or form faces out of sand, or perhaps we
simply wish to creatively dissolve images. Of course, we
also wish to maintain a degree of physical realism in the
process. Particle systems would seem to be a natural choice
for achieving these artistic effects. However no general
framework for realizing these effects has been presented for
use with physically based particle systems.

 Thus the goal of this paper is to present a general method
to allow users to create artistic effects with particle
systems, while maintaining a degree of physical realism.
Specifically, we are proposing keyframing the position,
velocity, density, orientation and color of the particles to be
at a specific state at a specific time. Between keyframes
and when no keyframe is active, the particles are subjected
to physically based forces. The purpose of this is to allow
more control over the visual effects produced by the
particle system, while still maintaining a certain amount of
physical realism.

 We begin with a simple method of keyframing the
position of every particle. We will then demonstrate how
this basic method may be expanded to achieve more robust
keyframing, such as density to density and boundary to
boundary methods. As we present these methods, two
examples of application will be illustrated. We will
conclude with possible directions of further expanding
these keyframing methods. For example by introducing a
plausibility test of the generated paths.

The advantages offered by this technique are:

• Gains in user controllability.
• An increase in speed if implemented in parallel

environments [Sim90] or on the graphics
processing unit [KSW04].

• User controlled plausibility testing of the paths
generated.

• Generality to be applied to most any particle
based simulation.

• Particles move “naturally” until a keyframe
becomes active.

2 Previous Work

Particle systems have been used in many ways. In computer
graphics they often represent fuzzy or poorly defined

objects such as gases and liquids [Ree83, ECP94, Sta99,
YOH00, FSJ01]. They have also been used to model cloth
[BHW94, BW98, CK02] and other deformable objects
[TW88, CMN97, BCDD00]. Expanding upon that they can
be used to model surfaces [PZVG00] and generate surface
textures [Tur91].

 While effects similar to those presented in this paper have
been previously achieved, no general presentation of how
they were achieved has ever been offered. There has been
work done by others that might suggest such methods
[ACM03], but none have specifically applied or discussed
the methods with respect to physically based particle
systems.

 It is also noted that many rendering systems offer particle
based effects. These systems often refer to keyframing
particle effects. However, the keyframing they refer to does
not involve the states of the individual particles, but rather
the state and motion of the particle emitters. Effectively
they are referring to sequencing the timing and positioning
of particle effects. In a few of these systems it is possible to
assign a goal for particles, however, it is only possible to
assign one goal and other forces, specifically conditional
forces, cannot be applied to the individual particles. Further
the goals cannot be turned off or randomized for each
particle. In the end, it may be possible to implement the
keyframing methods we will present on existing rendering
systems, however the methods themselves are not inherent
to any such system.

 Also related to this paper is the recent work on
keyframing the motion of smoke [TMPS03, FL04] as well
as more general animation techniques involving
keyframing concepts [Ree81, SB85, Las87]. None of these
applied keyframing techniques directly to particle states.
So, while we are certainly using similar ideas, we will show
how to apply them to particles in general.

3 Basic Method, Position to Position

The most straightforward method to keyframe particles is
to specify each particle’s initial and target position (or
state). The difficulty is maintaining the natural behavior of
the substance being modeled by the particles, while at the
same time forcing it to do something very unnatural. With
this in mind, if we are given an initial position and a final
position for each particle and a set of external forces acting
on the particle then it is possible to achieve an automatic
‘in-betweening’ of the keyframes using a simple process.

 So, assume we are given the initial position of a particle,
p0, which occurs at time t0, and the next position of the
particle pn, which occurs at time tn. We are also given a
constant time step of ∆t ≤ tn - t0, that will be used
throughout the simulation and a list of forces that will act
on the particle. With this information we are able to derive
a force for each time step that will apply the given forces to
the particle and guide the particle to its final destination. It
should be noted that keyframes are not always active and

we need not run from one keyframe to another, thus the
particles may have periods of free motion.
 For a given time step, i, let the current time be denoted ti
and let the sum of the forces acting on the particle be
denoted by Fi. For the same time step let fi denote the force
that if applied for the remaining time of tn - ti = ∆ti would
move the particle from its current position, pi, to its final
location, pn, disregarding Fi.

Figure 1: Two calculated forces acting on a particle.

 This would give the total force acting on the particle to
be: (Fi + fi)∆t. However, this would not guarantee that the
particle would ever reach its target position pn. To make
such a guarantee a scaling or weighting function, si, must
be introduced. Thus the force acting on the particle would
be: (si Fi + fi)∆t.

 For simplicity we shall use a linear scaling function to
define si = ∆ti /(tn – t0). This is not the best function for all
cases, and others could be used. This scaling term will
automatically diminish the effect of Fi. Notice the effect of
fi is inherently diminishing as the particle gets closer to its
target, however, it may also be explicitly weighted if
necessary. Further if we wanted each particle to behave
differently a degree of randomness may be introduced by
multiplying si by a random scalar ri ∈ (0, 1].

Figure 2: Motion by scaled force sum for ith time step.

 Having calculated the forces Fi and fi and the scaling
term si, we move the particle for the ith time step by
applying a force of (si Fi + fi)∆t.

Figure 3: An imaging dissolving under gravity.

 This position to position method was used to morph one
image into another, as illustrated in figures 3 and 4. This
morph began by initializing the particles so they displayed
their image. They were then subjected to a variety of
physically based forces, without any keyframing. After a
certain amount of time passed, a keyframe became active
guiding them back into a form that would display their
contained image. Within this morphing a timely change of
particle coloring was also implemented. This demonstrates
a feature of this method by showing the particles need not
move directly from one keyframe to another.

Figure 4: An image reforming via keyframe forces.

4. Density to Density Keyframes

Explicit position to position keyframes are limited in their
use, because user specification of target goals for every
single particle can become problematic. However there are
many algorithms that employ the use of density and
velocity functions, for example those used to model fluids
or gases [EP90, Sak90, FM96, FSJ01]. The effects of these
methods are impressive, however, they can take some time
to simulate and render and do not inherently allow much
control of the visual effect. Recent effort has been made to
remedy this. For example, it is now possible to control the
motion of smoke and similar substances [TMPS03, FL04]
on grid based simulators. However, these were not particle
based effects.

 Because there are scenarios where the motion of the
density of a substance is being considered it is useful to
have the ability to keyframe particles based on area, or
volume, densities. From a user perspective, this means
moving a given number of particles from one area to
another. Exactly which particles get moved where is no
concern as long as the necessary number of particles ends
up in the correct area. While this could be from multiple
areas to multiple areas, for a simple presentation we will
limit the scenario to a case of one source area and one or
more target areas.

 It should be emphasized that in this form of keyframing
the shape of the source and target areas is of no concern.
Only the number of particles is of any significance. Further
while the word area is used in the descriptions the word
volume equally applies. For additional simplicity we
assume each mentioned area is of the same size. Thus
densities are more directly identified by the number of
particles in each area.

 For density to density keyframing we are not concerned
with which particles go where. Rather we want to move a
given number of them from one area to another in the hope
to simulate a density flow pattern. To achieve this the task
is broken into three parts: particle selection, destination
calculation and path generation. To implement this we say
there exists a function for each part of the task. To
demonstrate simple versions of these functions we make
some assumptions. Among these are: there exist no inter-
particle relationships and there is only one source area. If
these assumptions are not true, more complicated functions
may be used, and even if they are true, other functions may
perform better in given scenarios. Yet the following
worked for our scenarios.

 Before creating the paths of particles involved in density
to density keyframes it is necessary to identify which
source particles will move to which target areas. Assuming
we have only one source and one target area, this is trivial.
If there is one source and two target areas, where the
density of each target is half that of the source, it is easy to
randomly select half of the source particles and assign them
to the first target area and the other half to the second target
area. This readily extends to three or more target areas and
can be adapted to work if there are multiple source areas.
However, if there are relationships between the particles
themselves or other such considerations, then other
selection methods may be used. Notice also that the source
area must have a density great enough to support the target
densities.

 Once the source particles are selected and assigned to
target areas it is necessary to determine where in the target
area they will go. Obviously they could all go to the same
location in the target area. However, that is usually not
desired.

 To determine the target location of each particle we begin
with a coarse estimate based on a center of mass concept. If
the particles are extremely dispersive in nature a refinement
may be necessary.

 To generate a coarse path we use a center of mass
concept. To illustrate this consider the case where there is
only one source area and one target area. The center of
mass of the source area and target area is calculated. The
simulation then runs forward. At each time step the center
of mass of the particles is recalculated. The position to
position keyframing is performed on the center of mass of
the particles to obtain the fi that will be applied to all the
particles. The Fi is still unique to each particle. This allows
a performance gain by reducing the number of fi
calculations, however if the particles are extremely
dispersive in nature, or the relative size of areas involved is
significantly different, the particles may not all end in the
target area, which would require a refinement of the path.
This need for refinement would require a detection method,
such as the plausibility test described in section 6.

 To refine the path we subdivide the particles based on
their locations at each time step. This division is done using

an adaptive kd-tree algorithm, where the divisions increase
in number as the time approaches tn. We then perform the
same center of mass path planning as described above on
each division. If necessary, this progresses down until each
division contains only one particle. Thus, eventually, a path
ending with the desired density in the target area is
guaranteed.

 This center of mass concept may be skipped. However
doing so may slow the simulation. Should that not matter
the easiest method for density to density keyframing is
again to rely on randomness, and assign each source
particle a random location in its target area. Once each
particle is assigned a destination, its path is generated as
described in the position to position keyframing. Again, if
there are interparticle relationships to be maintained, or
other restrictive considerations, then other target
assignment methods may be used, but the method of path
generation stays the same.

5. Boundary to Boundary Keyframes

Boundary to boundary keyframes are the most visually
interesting of the methods. With this keyframing ability we
can form many entertaining effects. Examples of such
effects are illustrated in figures 5 and 7.

Figure 5: The letter S formed by 6000 particles.

For boundary to boundary keyframing we duplicate the
processes used in density to density keyframing. However
we remove the option of using a center of mass concept as
we must guarantee the particles generate the desired shape.
To do this we require a specific destination to be assigned
to each particle based on a uniform random assignment of
positions within the target boundary. More explicitly we
again break the task into three parts: particle selection,
destination calculation and path generation.

The particle selection method remains the same as in the
density to density case. However the destination
assignment while still random, must now be uniformly
random within the target boundary. The path generation

function remains the same, however, the center of mass
concept can no longer be used. Thus fi must be calculated
for each particle.

Figure 6: A square morphing into a triangle.

 An expansion of this method also exists using current
morphing techniques. Assuming the source and target
boundaries are both closed then it is possible to create a
morph between them [SG92]. From this we may obtain an
intermediate boundary shape for each time step and we
may confine the movement of the particles to stay within,
or near, these intermediate boundaries. This confinement is
enforced by the plausibility testing described in the next
section. This usually produces a smoother transition.

Figure 5: Howdy forming from a ball of smoke.

6 Plausibility

In all three keyframing methods there must be a concern for
the plausibility of the paths the particles follow. Thus, once
a path is generated its plausibility should be measured. This
concept is well explained in [ACM03], and we will be
modifying and adding to some of their results to be applied
to physically based systems.

 While we could approach plausibility as an optimality
problem and apply techniques similar to those in [BN88,
Coh92] for visual effects we do not necessarily want the
most optimal solution and will likely desire some
randomness to remain or be introduced in the motion. To
accomplish this we will stray from the optimality methods
and introduce a random scalar ri ∈ (0, 1] and offer a change
of the equation presented in section 3, where the total force
was: (siFi + fi)∆t, it now becomes: (risiFi + fi)∆t. Other
randomization techniques may also be applied or specified
by the user. Likewise the fi term could be randomly scaled,
however that removes the guarantee of hitting the target
positions. This randomness allows multiple paths to be
generated from the same algorithm. This should change the
paths enough that some will be better than others.

 It should be noted that technically the entire path from
one keyframe to the next must be calculated to truly judge
the plausibility of the path. To do this, speculative paths
must be generated fast enough to not delay the visual
display. However the activation and duration of keyframes
is user specified. To reduce the runtime we do not always
judge the plausibility of the entire path, but just a small
subsection going only a few time steps ahead of the current
time. The exact number of time steps is left as a parameter
to the user. If that number amounts to a time greater than
the largest active keyframe duration, then the plausibility of
the entire path will be performed for all keyframes. While
that should generate better paths it is not required and may
slow the runtime performance.

 The process of generating paths and testing their
plausibility is performed until a user specified level of
plausibility is achieved or a given number of attempts is
exhausted.

6.1 Plausibility Criteria

For our simulation methods, the plausibility is a measure
based on:

• d = the distance of particles from their target
positions,

• p = the viability of the particle positions,
• v = the ratio of the magnitudes of the velocity of

the particles between time steps.

 This plausibility is comparative in nature so the first path
generated will always be accepted, but may be replaced by
successively generated paths. To express this we will
follow notation similar to that presented in [AMC03].
However we will be testing individual particle paths, not all
the paths all at once. So, letting g(candidate path) be the
plausibility rating of a newly generated path and g(current
path) be the plausibility rating of the currently chosen path
then the probability of choosing the new path over the
currently chosen path is:

Paccept = g(candidate path) / g(current path)

This allows the new path to be chosen if Paccept is greater
than a user specified value.

 For a given path we will define three functions; g(d), g(p)
and g(v) such that g(path) = g(d)*g(p)*g(v). The details of
each of these functions is described below.

 It is important to understand these are only suggested
criteria. Other measures of plausibility may be used as
needed. Notice also each plausibility test is across only a
small number of time steps, possibly one or perhaps the
entire time from initial state to keyframe state. The number
of time steps being considered will determine how reliable
the plausibility test is.

6.2 Distance Plausibility

The distance plausibility of a path, g(d) is a measure of how
close the particles are to their target states. In density to
density keyframes this may be applied to the center of mass
rather than individual particles. In every method it is
defined as:

g(d) =
2([]) ([]) / 21

2
dPos part i Dest part i

d

e σ

σ π
− −

where part[i] is the particle indexed by i, Pos(part[i]) is the
current position of part[i], Dest(part[i]) is the target
position of part[i] and σd is a small user defined constant,
0.1 to 0.5 should work. This is similar to the center of mass
measure presented in [ACM03], though it is being used a
little differently here. Other measures should also work.

6.3 Viability Plausibility

The plausibility of the viability of the ending particle
position of a path is a measure of whether the particle can
be or should be in that location. Thus it is defined as two
functions:

g(p) = hc*hs.

 The “can be” part of the measure, hc, is a Boolean
function. If at any time of the path being considered, the
particle is sitting somewhere that it cannot be, such as
inside another object, hc = 0, otherwise hc = 1. Other
criteria for this may be used, and the function need not be
Boolean, however for our purposes this was sufficient.

 The “should be” part of the measure, hs, only applies in
the case of a boundary to boundary morphing keyframe and
is a function of the square distances of the particles from
their temporary target locations. This is defined as:

hs = * ([k sqrdist part ie−])

where k is a user supplied constant and sqrdist(part[i]) is
the distance squared from part[i] to its target destination.
Values between 5 and 20 work well for k. This is similar to
the shape measure presented in [ACM03]. However the hc
term is unique to this paper and our points of distance
measure for hs are different.

6.4 Velocity Plausibility

The plausibility of the magnitude of the velocity of the
particles, g(v), is necessary to achieve a visual smoothness
in motion. This measure is unique to this paper. For one
time step

f(v) =

* ([]) ([])

([])
c p

p

c vel part i vel part i

vel part ie
− −

where velp(part[i]) is the velocity of part[i] on the previous
time step, velc(part[i]) is the current velocity and c is a user
defined constant. Values near 1 should work well for c.

From this g(v) is the product of all f(v) across all the time
steps used to generate the path:

 g(v) = f(v)
_ _all time steps
∏

7. Conclusion and Future Work

We have now described three keyframing methods
applicable to physically based particle systems. These
methods should be easy to implement and incorporate in
already existing systems. The methods may be combined to
achieve a variety of effects. In such a combination the
priority of each effect must be determined in the path
generation. It is recommended to give position to position
the highest priority and density to density the lowest.
However it could be left to the user to specify.

 The majority of the discussion above is dealing with just
the position of the particles. This is mostly for
understandability. The ideas presented can be applied to
any state variable of the particles, such as color,
transparency, rotation, velocity, etc.

 In a similar fashion the criteria and weighting functions
we have chosen are for demonstration, they are not the only
choices. It might also be possible to achieve the same
results using other methods. For example, while we are
considering velocity directly as a plausibility criteria it may
also be controlled by using smaller time steps or increasing
the time between keyframes. However for consistency
within this method we treat it as a plausibility criterion.

 We note the visual appeal of particle effects does not
meet everyone’s standards. However, these are realtime
effects, and are likely to be made faster with the
advancement of GPU programming techniques. Further
these methods need only be used to prototype an effect
after which more advanced techniques and a larger amount
of time could then be dedicated to final renderings.

 In conclusion, it should be obvious that implementing this
method would allow for greater user control of physically
based particle effects. While the concept of plausibility has
been presented by others, we have shown that it can work
within this general, physically based framework. Further,
we have offered a way the user may control how well the
plausibility tests perform. This is allowed not only by
setting the parameters of tests, but also by setting for what
time length of a path they will be applied. In all of this we
have been integrating the usage of keyframe constraints
with physical forces. There is no reason these forces need
to be reality based and the method should work for any set
of external forces or rules of motions. Of importance is that
the particle motion is not always keyframed; the particles
may behave “normally” until a keyframe becomes active.
Implementing such a method will allow for a myriad of
effects to be obtained not currently attainable in as easy of
a fashion.

Acknowledgements

We would like to thank Dr. Donald House of the
Visualization Sciences program at Texas A&M University
for his support and guidance in the development of this
paper. We would also like to thank David Eberle for his
encouragement, and the authors of [ACM03] for
inspiration.

References

[AMC03] Anderson, Matt and McDaniel, Eric and
Chenney, Stephen, Constrained Animation of Flocks,
Eurographics Symposium on Computer animation, pp. 286-
297, San Diego, 2003.

[BCDD00] Barr, A., Cani, M.P., Debunne, G., Desbrun,
M., Adaptive simulation of soft bodies in real-time,
Computer Animation 2000 Proceedings, pp. 15-20, 2000.

[BHW94] Breen, D.E., House, D.H. and Wozny, M.J.,
Predicting the Drape of Woven Cloth Using Interacting
Particles, SIGGRAPH’94, pp. 365-372, 1994.

[BN88] Brotman, Lynne Shapiro and Netravali, Arun N.,
Motion Interpolation by Optimal control, Computer
Graphics, Vol. 22, No. 4, August, 1988.

[BN92] Beier, Thaddeus and Neely, Shawn, Feature-based
image metamorphosis, SIGGRAPH '92, pp. 35-42, 1992.

[BW98] Baraff, Witkin, Large steps in cloth simulation,
SIGGRAPH 1998.

[Coh92] Cohen, Michael F., Interactive Spacetime Control
for Animation, Computer Graphics, Vol. 26, No. 2, July
1992.

[CK02] Choi, Kwang-Jin and Ko, Hyeong-Seok, Stable but
Responsive Cloth, SIGGRAPH 2002, Vol. 21, No. 3, July
2002.

[CMN97] Christensen, J., Marks, J. and Ngo, J. T.,
Automatic motion synthesis for 3D mass-spring models,
The Visual Computer, Vol. 13, pp. 20–28, 1997.

[ECP94] Ebert, D.S., Carlson, W.E., and Parent, R.E., Solid
Spaces and Inverse Particle Systems for Controlling the
Animation of Gases and Fluids, The Visual Comp., 10:179-
190, 1994.

 [EP90] Ebert, D. S. and Parent, R. E. Rendering and
Animation of Gaseous Phenomena by Combining Fast
Volume and Scanline A-buffer Techniques,
SIGGRAPH’90, Vol. 24, No. 4, pp. 357-366, August
1990.

[FL04] Fattal, R. and Lischinski, D., Target-Driven
Smoke Animation, SIGGRAPH'04, Los Angeles, Vol. 23,
No. 3, pp. 264-270, August 2004.

[SB85] Steketee, Scott N. and Badler, Norman I.,
Parametric keyframe interpolation incorporating kinetic
adjustment and phrasing control, SIGGRAPH’85, pp. 255-
262, 1985.

[FM96] Foster, N. and Metaxas, D., Realistic Animation of
Liquids, Graphical Models and Image Processing, Vol. 58,
No. 5, pp. 471-483, 1996.

[SG92] Sederberg, Thomas W. and Greenwood, Eugene, A
physically based approach to 2-D shape blending,
SIGGRAPH’92, pp. 25-34, 1992.

[FSJ01] Fedkiw,Ronald and Stam,Jos and Jensen, Henrik
Wann, Visual Simulation of Smoke, SIGGRAPH'01, pp.
15-22, August, 2001.

[Sim90] Sims, K., Particle Animation and Rendering Using
Data Parallel Computation, Computer Graphics
SIGGRAPH’90, vol. 24, no. 4, pp. 405-413, 1990.

[KSW04] Kipfer,Peter and Segal,Mark and Westermann,
Rudiger, UberFlow: A GPU-Based Particle Engine,
Eurographics 2004, Grenoble, France, 2004.

[Sta99] Stam, J., Stable Fluids, SIGGRAPH’99, pp. 121-
128, 1999.

[Las87] Lassester, John, Principles of traditional animation
applied to 3D computer animation, SIGGRAPH’87, pp. 35-
44, 1987.

[TMPS03] Treuille, Adrien , McNamara, Antoine,
Popovic, Zoran and Stam, Jos, Keyframe Control of Smoke
Simulations, SIGGRAPH’03, Vol. 22, No. 3 pp. 716-723,
July, 2003.

[OF02] Osher, S. and Fedkiw, R., Level Set Methods and
Dynamic Implicit, Surfaces, Springer-Verlag, New York,
2002.

[Tur91] Turk, Greg, Generating Textures on Arbitrary
Surfaces Using Reaction-Diffusion, Computer Graphics,
Vol. 25, No. 4, pp. 289-298, July 1991.

[PZVG00] Pfister, H., Zwicker, M. , van Baar, J., Gross,
M., Surfels: Surface Elements as Rendering Primitives,
SIGGRAPH 2000, pp. 335-342, July 2000.

[TW88] Terzopoulos, D. and A. Witkin, Physically-based
models with rigid and deformable components, Proc.
Graphics Interface, pp. 146-154, June, 1988.

[Ree81] Reeves, W., Inbetweening for Computer
Animation Utilizing Moving Point Constraints,
SIGGRAPH’81, pp. 263-270, 1981.

[YOH00] Yngve, G. D., O'Brien, J. F., Hodgins, J. K.,
2000, Animating Explosions. The proceedings of ACM

[Ree83] Reeves, W., Particle Systems: A Technique for
Modeling a Class of Fuzzy Objects, Proc. SIGGRAPH’83,
pp. 359-376, 1983.

SIGGRAPH 2000, New Orleans, July 23-28, pp. 29-36,
2000

[Sak90] G. Sakas. Fast Rendering of Arbitrary Distributed
Volume Densities, Proceedings of Eurographics ’90, pp.
519-530, September 1990.

