
 
 
 
 
 
 

Volumetric Particle 
Separating Planes 

for Collision Detection 
 
 

by 
 
 

Brent M. Dingle 
 

Fall 2004 
Texas A&M University 

 
 
 
 
 
 
 
 
Abstract 
In this paper we describe a method of determining the separation plane of two objects 
during collision detection. This method is specifically designed for volumetric particle 
representations of objects, volpars. This particular technique offers an advantage over 
previous methods because it only looks for a separating plane for the areas local to the 
point of contact. This increases the robustness of the technique as it will require no 
special considerations for concave versus convex cases. This should be similar in 
behavior to those methods based on nearest features within Voronoi regions.  
 
 
 



1   Introduction 
In this paper a method for determining the separating plane between two objects in 
collision will be presented . This method is specifically designed for volumetric particle 
representations. The advantage this method offers is its robustness. The fundamental 
concept of the method is in finding a separating plane between two colliding objects that 
is based on the local geometry near the point of collision. Thus the separating plane might 
not entirely separate the objects, but separates the surfaces (faces) of the objects that are 
in collision. This allows the method to function regardless of the convexity (or concavity) 
of the colliding objects. It is believed that this algorithm when used in conjunction with 
“large” bounding box techniques will offer a time performance that is competitive with 
any other collision detection method currently used. It is also believed that further time 
reductions may be possible if the techniques are adapted to take advantage of the GPU. 
This is conceivably possible due to the simple structure of particles and the nature of 
collisions between them. The necessity of demonstrating this equivalent performance is 
driven by the desire to encourage the usage of volumetric particle representations in 
physically based modeling. 
 
This paper will begin with a description of what a volumetric particle representation, 
volpar, of an object actually is. It will then give a brief description of the “general” 
collision detection process. From there it will present the new method and a simple 
example. The paper will conclude with a brief summary and possible future directions 
and usage of the method. 
 
 
2   Volumetric Particle Representations 
Volumetric particle representation of objects is best described as a representation of an 
object created by filling the object with particles and joining them with some form of 
connector. This particular representation is a modification of that used in fluid and cloth 
simulation. In those cases the former has no connectors between the particles and in the 
latter the connectors are usually springs. For the sake of this paper we will assume the 
connectors are rigid rods that allow no motion between the particles. However the 
method to be described shortly should function on any object representation that is 
similar to a volumetric particle representation, volpar. 
 
Two examples of volpar representations of boxes are illustrated below: 
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It should be noted that while volpars are similar to voxels, they are not the same thing. 
Voxels are (almost) always cubes and have no explicit connections between them. 
Whereas volpars usually have an explicit connection defined and are most often spheres. 
Another major difference is that voxels were designed for display purposes, whereas 
volpars are designed for simulation purposes. However, in a sense, voxels may be 
considered a subset of volpars.  
 
 
3   Collision Detection in General 
For this paper collision detection will be thought of as a task necessary to perform 
collision response. More specifically, we will not just seek to determine if objects are in 
collision, but how and where they are in collision. Thus we effectively have two 
processes: collision detection and collision response. While we will only give details 
concerning the former, we must do so in a way that is useful to the completion of the 
latter. 
 
Almost all collision detection techniques can be divided into two phases: the quick, broad 
phase and the more accurate, and time consuming narrow phase. The broad phase usually 
only determines which objects might be in collision. The narrow phase will determine if 
two objects are indeed in collision and the details of that collision. These details usually 
include which two objects are involved, the point of contact, the normal of the separating 
plane (or equivalent) and the type of contact [Bar1999]. 
 
In the broad phase the simplest routines partition space and report objects that are in the 
same space as potentially colliding [Ove1992]. Other routines give every object in the 
world some form of bounding box or sphere. In these techniques you have Axis Aligned 
Bounding Boxes (AABB) and Object Oriented Bounding Boxes (OOBB) [Got1996].  
With these boxes, various hierarchal tree structures are created which allow for quickly 
determining if two objects might be in a collision state. In other collision detection 
methods nearest features of any two objects are maintained throughout the simulation and 
are used to detect when objects might collide [Lin1991, Mir1998]. Most of these routines 
are efficient and effective in implementation. However when the actual collision is 
narrowed down and the collision point is determined they still must determine a 
separating plane (or equivalent) to perform the collision response. 
 
This paper is not suggesting anything better for the broad testing phase of collision 
detection. The methods currently used can easily be used with volpars. However there is 
an advantage in using the volpar representation in that it can calculate the separating 
plane of two objects as fast, if not faster than any method designed for any other 
representation. It also allows the automatic processing of features local to the area of 
collision and in this sense is similar to the Voronoi, nearest features techniques. 
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4   Method of Determining the Separating Plane 
For this method we will assume we have used a good routine to determine that two 
objects are in collision and we know the approximate point of initial contact. The task we 
are left to determine is to find a plane that sufficiently separates the two objects so that a 
collision response may be performed. We make no assumptions about the objects being 
in the same form or shape as they were at the beginning of the simulation. We also make 
no assumption that the number of faces of an object remains constant. Thus this method 
should work for deformable or non-rigid objects as well as rigid bodies. 
 
In a very real sense this method is based on that used in determining the separating plane 
of rigid convex objects. In that scenario an exhaustive search and comparison of all faces 
of both objects will succeed in finding a separating plane. We will take a similar 
approach, but must determine a way to define the faces we wish to explore. 
 
All collisions between two volpar objects will be a collision between multiple particles of 
the two objects. Effectively this gives three cases: there is one, two, or more than two 
contact points between the two objects. In each case we will first derive a set of possible 
normals for the separating plane. We will then test each possibility. 
 
In the case where there are three or more contact points, we know there are three or more 
unique particles in at least one of the two objects. Assuming those three particles are not 
collinear then the potential separating plane is the cross product generated by the two 
vectors formed from those three particles. This amounts to a face-face or vertex-face 
collision. If the three particles are collinear then the other object must have at least two 
unique particles involved in the contact points. This is likely an edge-edge collision and 
the cross product of the vectors formed by taking two unique particles from either object 
will give a possible separating plane. As an aside, it is also possible to find potential 
normals of separating planes by using the contact points themselves. 
 
In the case of two contact points, at least one of the objects must have two unique 
particles involved in the contact. If the other object also has two unique particles involved 
in the contact then a possible separating plane is generated by creating two vectors, v1 
and v2. This is done by setting v1 to be the vector created from the difference of the 
centers of the particles in the first object and v2 is likewise created from the centers of the 
particles in the second object. If one of the objects, say the second, only has one unique 
particle involved then v2 is formed by taking the difference between the actual contact 
points. Once both v1 and v2 have been determined then a possible separating plane is  
generated from their cross product. 
 
In the case of one contact point the two objects must temporarily be advanced a small 
time step forward until more than one contact point occurs. Thus allowing the application 
of the above described methods. This may experience the same type of difficulties that 
arise in vertex-vertex collisions, however that will not always be the case as this may also 
describe a vertex-face or vertex-edge collision. 
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In all cases each possible separating plane must be tested to see that it actually separates 
all the particles of each object involved in the collision. This test is a simple derivation of 
the plane equation defined by the normals calculated above and assuming the plane must 
go through a corresponding contact point. 
 
This may also include a small predetermined number of neighbors of each particle 
involved in the collision. This allows for the locality of the separating plane to be 
validated. For convex objects it should be noted that the derived separating plane will 
separate all the particles of one object from all the particles of the other object. 
 
It should be immediately recognized that the repeated calculation of vector products is a 
time consuming process. In actual implementation of this method it would be 
advantageous to maintain a list of surfaces for each particle in each object. This list 
would remain constant until the object breaks apart or deforms. So in reality most of the 
calculations would be done before the simulation begins. The list of surfaces would likely 
be a global list of normals with each particle holding an index or pointer to the correct 
normal for the surface of which it considers itself as being a part. The significant point of 
the above is that it allows everything to be dynamically determined. So even if the list of 
normals is precalculated there is no assumption that it cannot change and using the above 
methods it can by dynamically updated. 
 
 
5   Examples 
In this section we will present some examples of collision detection using the standard 
rigid-body terminology and relate them to how a system using volpar representations of 
bodies would identify them. These examples will include vertex-face, edge-edge and 
edge-face. From these three examples of collision detection it can be deduced how the 
other various types of collisions can be detected and resolved. 
 
 
5.1   Vertex-Face Example 
A vertex-face collision in a volpar representation has three unique detection scenarios in 
the number of particles involved: one to one, one to two, or one to three. Any scenario 
involving one to more than three can be reduced to the case of one to three. 
 
 

                           
 
 
 
 

   4



In the event of only one contact point between the two objects is found then the easiest 
solution is to temporarily move both objects slightly forward in time without making any 
adjustments. This will likely cause the scenario to change to two or more contact points. 
 
For two contact points we will have one particle in object A and two particles in object B 
involved in the contacts. To determine a possible separating plane we will create two 
vectors. The first vector is formed from the two contact points (both are on or near the 
surface of all three particles). The second vector is created from the center of the two 
particles of object B. Taking the cross product of these two vectors will give us a possible 
normal for a separating plane. We will assume the plane must go through at least one of 
the contact points. With the calculated normal and the stated assumption we can easily 
form the equation of the possible separating plane. We then test if this plane separates the 
particles involved in the contact points. We might also test a small number of the 
neighboring particles of those involved in the contact points. 
 
In the case of three, or more, contact points we will have one particle in object A and at 
least three particles in object B. We will again form two vectors. To do this we select one 
of the particles in object B, the center of this particle will be the tail of both our vectors. 
We then select two other particles in object B. The center of these two particles will be 
the heads of our two vectors. The possible separating plane will have a normal equal to 
the cross product of these two vectors. We would then derive the equation for the 
possible separating plane as described in the case of two contact points and perform a 
similar test to determine if indeed it is a separating plane. 
 
 
5.2   Edge-Edge Example 
For an edge-edge collision to happen there are also three unique detection scenarios in the 
number of particles involved: one to two, two to two, or two to three. In the last case the 
three particles will be roughly collinear. Any case involving more than three particles in 
either object will reduce to this last case. The co-linearity of the points will distinguish 
this case from a surface to whatever collision. 
 

                            
 
 
For the one to two particle case we will have two contact points. We will assume the 
singular particle is in object A and the other two particles are in object B. We will create 
a vector from the contact points and we will create another vector from the center of the 
two particles in object B. We then take the cross product of these vectors and use the 
result as a possible normal for a separating plane. Then as in the vertex-face scenarios we 
will verify that the plane with that normal through at least one of the contact points is 
indeed a separating plane for the particles of either object local to the area of contact. 
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For the two to two particle scenario, we have two particles from either object from which 
we can form two vectors. The first vector is formed from the center of two particles in 
object A and the second vector from the center of two particles in object B. Taking the 
cross product of these vectors gives us a normal for a separating plane that would be 
tested as described above. It should be noted that we might also use the contact points 
themselves for one of the possible vectors. 
 
In the two to three, or many collinear to many collinear, case it is easiest to temporarily 
advance the objects a small time step. This will yield a scenario allowing for a better 
estimate of the normal of the separating plane. Effectively we will treat the particles of 
object A as an edge. We then see what particles of B are involved in the contact after the 
time step forward, excluding those defining the edge of object B. This should amount to 
an edge-face collision. 
 
 
5.3   Edge-Face Example 
For an edge-face type collision to occur there are two unique detection scenarios: two to 
three or three collinear to three. Any case involving more than three particles from either 
object will reduce to the latter of the two scenarios. 
 

                                              
 
In the two to three scenario we have two particles from object A and three non-collinear 
points from B. Effectively the three center points from the particles of B will define a 
face. To determine this face we will create two vectors from the particles of B. This will 
be done by selecting a particle in B to be the tail of both vectors. The other two particles 
in B will then be the heads of the two vectors. We then take the cross product of these 
two vectors to establish the normal of the possible separating plane (effectively a face of 
B). Then, assuming the plane must go through at least one of the points of contact 
between the two objects we test to see that the plane does indeed separate the particles of 
A from the particles of B. 
 
In the three collinear to three scenario we do exactly the same procedure as was done in 
the two to three scenario. We use the non-collinear particles in B to determine a possible 
separating plane and then we test to make sure the plane separates the particles involved 
in the contact points. 
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6   Conclusion 
So from the above it should be apparent that the methods of collision detection based on 
the volpar representation of objects are equivalent to any already existing technique. It 
should also be apparent that the techniques offer an increase in robustness in collision 
detection as they are strictly based on the locality of the contact points between objects.  
 
While the calculation of cross products may be a time consuming operation, many of the 
scenarios could offer pre-computed normal information for each particle. This could be 
done in a fashion that dynamically responds to the interaction between objects as objects 
break and deform due to collision. This would be done as a limited update and would not 
likely consume much time as it would only be necessary in cases where the objects 
colliding actually alter each other’s shape. 
 
In sum the use of volpar objects would not cause any significant loss in performance due 
to collision detection. In fact such use may offer more robust collision detection in a 
simple and easy to implement fashion. 
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