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Abstract:

The need for and usage of multivariate polynomials, arme menerally Computer
Algebra Systems, is readily seen in the popularity ofj@ms such as Mathematica,
Maple and Matlab. And while the need for the continuectldgvnent of such systems is
obviously advantageous to research efforts acrosssoestific and mathematical fields
there has been a severe lack of educational effort madaching the methods necessary
for designing such systems. This paper is written asce ptabegin development of a
(C++) class for supporting work with multivariate polynatsi There will not be much
discussion on specific algorithms as the emphasishise tin designing data structures to
support a diverse number of algorithms. The hope is thah @ starting point the
development of new polynomial algorithms will be encgerdain younger computer
scientists and programmers.



1 Introduction

This paper is created as an aid to those who may firetéssary to create their own data
types or classes to represent a multivariate polynowviale this task has obviously
been accomplished for many years, it is observedlibag have been very few
publications on the abstraction details necessargdoraplish the task (or at least such
publications are not widely distributed). With this imohthis paper was written. Herein
should be found a very basic and general outline of hdvegin to code the classes
necessary to model a multivariate polynomial. Whiereéhare many ways to do this, the
method chosen here was based on simplicity and is peelsaha novice level. It is
hoped that from this simple starting point the beginningent might be able to advance
his or her study in the art of programming, particulasiyadrds the study of computer
algebra or geometry related fields.

The general layout of this paper begins with some loiedicitions discussed in section
2. In sections 3 and 4, it moves into univariate and vauiite representations and
abstractions. Section 5 discusses the desired functyoaadl sections 6 and 7 present
some possible ways to implement multiplication and dimisSection 8 suggests some
potential directions to continue and section 9 is alosima summary. Source code for
some of the classes and functions, written in C+r beafound in the Appendices.

2 What is a multivariate polynomial?

For this paper it is first necessary to present sorftaas. We will begin by defining
apolynomialas an algebraic expression that is a sum of ternexewdach term contains
only variables with (nonnegative) integer exponentsraal coefficients. Next we will
define aunivariate polynomiahs a polynomial with one variable in each term ded t
variable in every term has the same name. Las#ywiV define amultivariate
polynomialas a polynomial where each term may have one oe raables of different
names and the variable names in any given term nedskndentical to the variable
names of any other term in the polynomial.

For example the following are univariate polynomials:
e X+3x+14
¢ 53.6/+ 1%
¢ 9367+ 14°-34°+h-3

Whereas the below are multivariate polynomials:
e X+y+12
* Txyz+abc+x-1&
e X¥+Xy-y*+45
e X-X-14
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Notice in the context of this paper univariate polyraisnare a subset of multivariate
polynomials. Note also that constants are consideréeé multiplied by a variable raised
to the zero power. Further we will be discussing thingenms of real numbers, though
most everything should easily and naturally extend topt&xmumbers.

3 Univariate Polynomial Representation

In Computer Science it is a relatively easy task tibtevaode to accommodate the usage
of univariate polynomials. The most often used reprasientis that of an array or list of
a type defined as:

TYPE PolyTerm
integer exponent;
real coefficient;
END TYPE

This makes things very nice to implement as all th@bkes are assumed to be the same
name (e.gx) in all terms of all the polynomials. So adding or sating polynomials is
just a matter of searching for terms with the sanm@e&nt and adding or subtracting
their coefficients. Multiplication and division are jwstnatter of properly modifying
exponents. Notice dividing a single PolyTerm by anosiregle PolyTerm might cause
negative exponents to appear which stretches the matibehaefinition of polynomial.
Further division of two polynomials, each of multiplents, only succeeds if the division
results in no remainder.

While these types of polynomials are useful for a lamg®aber of problems there often
are times when more than one variable would be nice.

4 Abstraction of Multivariate Polynomials

4.1 The Atom

Before beginning with code (or functionality) it is bé&s find a good abstraction of what
is needed. Let us consider how to describe a multivgz@ymomial. Obviously we need
exponents and coefficients. We also will need a waietp track of variable names.
This leads to a basic type defined as:

TYPE Atom
Integer exponent
real coefficent
char var_name
END TYPE

Notice the type name of Atom has been used. This slyrto emphasize a relationship
of construction that will become more obvious as wetioue.
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4.2 Constants — Special Atoms

An important design note is the realization that @afistants should be associated with the
same variable name. Even though any variable raisdetpero power is one, and thus
5a° + 1(° = 15, that realization is not obvious for a computeemvin is trying to find

terms with the same variable names to add togethes o algorithmic reasons it

would be best to use the same name for all constBmtdo this it would be a good idea
to reserve a variable name, say perhapsaitisgmbal @, for usage only with constants.
Thus the number zero as a type Atom would have an expoh@na coefficient of 0 and

a var_name of @. Likewise the number seven as a tyga Mould have an exponent of
0, a coefficient of 7 and a var_name of @.

4.3 Particles

Notice that our Atom type really only allows for agle variable, yet each term of a
multivariate polynomial may have many variables ded#nt names multiplied together.
So now we need to be a little more creative. Letamsider some examples of atoms:

. 3
. 1Oy2

e Zz

Any of the above could be terms of a polynomial. Bwtaf multiply them together, for
example & (10y* we get 3&%* which could only be a term of a multivariate
polynomial. This would seem obvious but not very meauningfowever, it gives a way
we might represent terms of a polynomial. Specificalysume we arbitrarily decided

that 26 is the largest number of variable names capébleing used in a single term of a
multivariate polynomial. Then we could define a new tgpdollows:

TYPE Particle
Atom atom_list[26]
integer num_atoms
END TYPE

Our choice of Particle as the type name is becaustielgaould clearly be composed
of atoms and thus our type names imply the relationgtipden the types. To be
mathematically correct our particles are terms oflgnponial. As for the data structure
itself , since we have assumed a maximum of 26 allowalable names an array of 26
atoms is sufficient to cover all possible particled anm_atoms would state specifically
how many unique atoms the particle actually contains. i$ta straightforward easy to
implement method that wastes memory. So note tlauid also be implemented as a
list of atoms, rather than an array.

4.3.1 Particle Coefficients

Now the observant reader willimmediately see thahigrepresentation we might end
up representing 36y* as X°10y*. This could be corrected by moving the coefficient out
of the Atom type and placing it in the Particle type, dsitong as we a careful in our
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handling of the coefficients everything will work. Sgieailly if we set all the

coefficients in atom_list[] to be one, except forratdist[0]'s we will have no problem. It
is noted that this does waste some memory, but inipeaadtows a little bit more
flexibility in coding.

4.3.1 Maintaining Order in a Particle

Another important issue when creating particles wiliri@ntaining the order of the
variables in the list of atoms. For example it ise®sary that the particiéyz be
recognized as identical §oéz The easiest way to achieve this is to always keep t
variables names (the atoms) in a consistent ordher nfost obvious way to do this is
alphabetically. Thus no matter what order the usertte particlecyz whether it be
asx’yzor asyx’z or asx’zyor any other permutation it will always be stored’ys

4.4 Polynomials
Continuing, we see that our type particle defines a tdranmultivariate polynomial
rather well. Thus we conclude our abstract types wetdtowing:

TYPE Polynom
Particle particle_list[]
integer num_parts
END TYPE

Notice that we do not really want to place a maximumiper of possible terms on our
polynomial so we will leave the array size undefinethtticate that while we could

define particle_list as an array we would prefer it t@loynamic list. This is done so

that in discussion we might refer to it as an arreycstire, though in actual
implementation it would be better done as a list. Thesave our abstract description of
a multivariate polynomial, but what functionality shobklapplied to it?

5 Functionality of Multivariate Polynomials

There are many things we may want to do with our nariae polynomials, but for now
we will restrict ourselves to just the basics of inmuttput, addition, subtraction,
multiplication, division and obtaining the results whems or all of the variables are
assigned numeric values.

It should be understood that the above types would maké#esxadasses in an object
oriented language and it would be easy to associate fogaatibh each type. Thus we
will list and describe some, but certainly not alltled basic functions or methods
associated with each type.
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5.1 Functions for the Atom
For the Atom the following functions would be adequate:
* A constructor.

o For the constructor it would be nice to be able tostroict an atom from
just a constant (e.g. 12) or from a coefficient andraenge.g. 8) or from
a coefficient, name and exponent (e.g23

* A method (or methods) to set the coefficient, expoaadtname of the atom

0 These would be the trivially obvious methods.
* A method to test for equality between two atoms

o0 This would compare the exponent, coefficient and nantleeotwo atoms.
* A method to find the multiplicative inverse of the atom

o This would take the numeric inverse of the coefficeamd set the
exponent to be the negative of its current value.

* A method to find the additive inverse of the atom

o This would simply make the coefficient of the atom e negative of its
current value.

* A method to output the coefficient, exponent and nanevaktue) of the atom.

o0 This would be an implementation dependent function, anddvtaed to
consider proper formatting.

* A method to evaluate the numeric value of an ators fatriable was assigned a
particular numeric value.

o This method would require the most work to make it effigcieonsidering
the exponents on the variable could be quite large (aglot ie positive
or negative). The type of number returned most likely diel the same
type as that assigned to the coefficient (e.g. real).

5.2 Functions for the Particle
For the Particle we need a little more functionality:
» A constructor.
o It would be nice to automatically initialize the paito be zero, or to
require an atom to be sent to the constructor.
* A method to set the particle to an initial atom.
0 Most likely this method will be sent one or more asom
* A way to put more variable names into the particlesonove variable names
from the particle.
0 These tasks would most easily be done by the belowptgudind divide
functions, there would be little reason to duplicate thRetall that the
ORDER the atoms are placed in the particle must bastent This will
likely require the comparison operators less than,nd gaeater than, >,
to be implemented in the Atom class.
* A method to multiply a particle by an atom.
* A method to multiply a particle by another particle.
* A method to divide a particle by an atom.
* A method to divide a particle by another particle.
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* A method to calculate the additive inverse of the partic
* A method to return the value of the particle if somalbof the variables of the
particle are assigned values.

o This method would at best be able to return a particEnaanswer, since
the user may wish to only assign some variables vakorsexample what
is the value of &yzif x = 2? The answer is §8which obviously is non-
numeric.

* A method to determine if two particles are equal.

o This method might not mean exact equality. In practiemore useful to
have an equality test to see if all the variabled aeir exponents) match.
This allows for a simple test to see if the two p#es can be added or
subtracted from one another. Having that test completetktermine if
they were exactly equal would be just a matter of tgstirir coefficients
for equality.

5.3 Functions for the Polynom
Of course the functions for Polynom are even largeumber:
* A constructor.
o Which would be nice if it automatically initialized tpelynom to zero,
and might be made better if it could initialize it tosiom or particle sent.
* A method to set the polynom.
o This method would initialize a polynom based on an atoparticle sent.
* A method to add (subtract) a particle.

o0 This function would allow more ‘terms’ to be added to ploé/nom.
While it is not obvious, it is important that the ORR in which the
particles are placed be consistent. A lexicographicirarg is probably
best, and this will require the comparison operatonsd<ato be
implemented in the Particle class.

o This would require another function to determine if agigarticle
‘matched’ any of the particles in the polynom (if fheaticle does not
match then a new term of the polynom is created reibe the matching
particles are added together). This ‘matching’ would beribestin the
equality test function of a particles.

* A method to add (subtract) a polynom.
o This would add the particles of the sent polynom to thengpolynom.
* A method to multiply by a particle.

o0 By the distributive law each particle of the polynomuldobe multiplied
by the particle sent.

* A method to multiply by a polynom.

o Here it would be necessary to multiply each particlefgiven polynom
by each particle of the sent polynom.

o It would also be necessary to correctly add any ‘likems after the
multiplication is performed — to keep the polynom as ‘sifrgepossible.

* A method to divide by a particle.
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o This would be a simple function which finds the multigiea inverse of
the sent particle and multiplies each particle of thergpolynom by it.

o Care would need to be taken for dividing by zero cases.

* A method to divide by a polynom.

o This would likely be the most complicated of all the imels and may not,
in the end, be possible to perform (ety. (y* + &) ).

o To get around this, it is possible to create a fraatlass, where both the
numerator and denominator are of type polynom. This wioeilthe
recommended easy solution (or this function may be skip@gd)erhaps
the division would return two polynoms: a quotient andnaaieder.

* A method to return the value of a polynom if some bofahe variables are
assigned specific numeric values.

o0 Notice this could at best return a polynom since riotaaiables are
guaranteed to be assigned a numeric value.

6 Implementation of Multiplication

Before beginning actual implementation it would be wissttidy the various ways to
perform polynomial multiplication — brute force, Fourigrisforms, Karatsuba, etc.
Likewise the various division, factoring and reductionhnes should be studied —
Groebner, Resultant, GCD, etc.

For this paper we will discuss two possible multiplicatioethods: the brute force

method and a Kroenecker Method. There will only bedivision method mentioned

and that is in section 7. It cannot be stressed entaghhtese operations will be the most
often used, if their speed can be increased it wouldgo®d idea to do so. The methods
presented here are adequate for simple things, but wittaly fail to be “fast enough.”

6.1 Brute Force Multiplication

This is the most obvious and straightforward way to ipiyltwo polynomials together.
In current mathematically teaching it is similar be +OIL (First Outer Inner Last)
method. It goes like this:

Given two univariate polynomiafsandq such that

p= Zn:ai X' and q= Zm:b, X
i=0 i=0

Then

po= nf[zanijEkk

k=0 \ k=i+]
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To implement the above the following code would suffiessuming, g andc are all
Polynoms and we waut=p [Q.

c=0

FORk=0tom+n
cur_coeff=0
FORi=0tok

a = p.GetCoeff(‘x’, i)
b = q.GetCoeff(‘x’, k — i)
cur_coeff = cur_coeff + (a * b)
END FOR i
an_atom.Set(cur_coeff, ‘X', k)
c.AddAtom(an_atom)
END FOR k

Where p.GetCoeff(‘x, i) returns the coefficientxdin the polynomiap,
an_atom.Set(coeff, ‘X', k) sets an_atom to have dficaeit of coeff a variable name of
x and a degree ¢fand p.AddAtom(an_atom) adda_atomto the polynomiap.

The above only works for univariate polynomials. Failtivariate polynomials it is
usually easiest just to perform the term by term (gdartig particle) multiplication and
add the result into the polynomial, with the expectati@t the add function will
combine like terms. Specifically the code might look:like

c=0
FOR i = 1 to p.num_particles
p_part = p.GetParticle(i)
FOR j =1 to g.num_particles
g_part = g.GetParticle())
c =c + (p_part * g_part)
END FOR j
END FOR i

While this looks very similar to the univariate cotesilikely much slower. Notice that
the multiplication is a multiplication of particle typegther than numeric coefficients,
which is slow. Further speed reduction is because thdadditan addition of polynom
types which is much slower than adding two numeric tylpethe end though, the above
code will successfully multiply two polynomials.

6.2 Kronecker Multiplication

Because the brute force method is slow, particularlyrigitivariate multiplication, there
has been extensive research into speeding it up. Balok 1070s a particularly clever
trick was advocated [Moe 76]. This trick was to map a rariate multiplication into a
univariate multiplication and then apply a fast methodrofariate multiplication
(preferably faster than the brute force one, butlitsiil work). An example (from

[Moe 76] of this is as follows:
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6.2.1 Example Using the Krénecker Trick, Bivariate ~ Case
Assume you have two polynomials

P=2Xy+x-y+2

q=xy+3X+4dy—3

Rewriting things sx is the variable with symbolic coefficients we s$kat:
pP=(y+1x+(y+2)
q=(+3x+(4y-3)

Notice the highest degreexin pis 1 and likewise the highest degreeaf g is also 1.
Thus the highest degreeyofhat could occur ip [ is 1 + 1 = 2. We want to set=y*
such thad is greater than the highest degreg tifat could occur ip [f. So we shall say
d=3andx = y’. Substituting this in fox we obtain:

P=(+ 1y’ +(y+2) =3 +y-y+2
q:<y+3>y¥+(4y—3) = +3°+4-3

From here we would apply a “fast” univariate multiplicatimethod to arrive at:

PA=2"+7 +3°+ A -3 +3° -4’ +1ly-6

We then invert the substitution by dividing yyand examining the remainder and
repeating the division on the quotient, until the quotiEtiomes zero:

Y HIY +Y AT - HY Y6 _ s i ns a2 gy g4 1Y

y y’
Which means our coefficient for th8 is —4/7 + 11y — 6 and we continue:
SRR TR &

So our coefficient for thebis A7 — 3y + 3 and we continue:
2 +Ty+3 _ o, 2 +Ty+3
=2 7 " =0+= 72 -

y’ y’

And our coefficient for kis 27 + 7y + 3. Thus we conclude that
(2xy+x—y+2) Oxy+3x+4y=3) = (37 + 7y + 3) X + (B> — 3y + B + (—4” + 1ly — 6)
=@+ y+3) X+ (Y~ 3+ 3x+ (-4 + 1y - 6)

As the above inversion process involves only divigiad multiplication by atoms it

should behave faster than explicit multiplication of matiate polynomials. The proof
this technique always works can be found in [Moe 76].
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6.2.2 Algorithm for the Kronecker Trick, Bivariate Case

Here is the algorithm to use the Krdnecker trick fer bivariate case. The general
algorithm will be presented in the next section. Binigple case is presented to assist in
the understanding of the more general case.

Let f(x, y) andg(x, y) be two polynomials.

1. Let d(f) = the maximum degree gfin f(X, y).
Let d(g) = the maximum degree pin g(X, y).

Letd=4(f) + d(g) + 1.

2. Apply the trick: substitutg® in for x into f(x, y) andg(x, y) to obtain:

f(y)=f"y)
d(y)=90"y)

3. Use a ‘fast’ univariate multiplication routine find f (y)D0g(y).

4. Invert the substitution to obtain the multivegianswer.

6.2.3 Algorithm for the Kronecker Trick, All Cases
Let f andg be two polynomials im variables. Name the variabledori = 1 ton.

1. Let d(f) =the maximum degree of variabldound inf.

Let d( g) = the maximum degree of variadound ing.

Letm[i]=d(f)+d(g) + 1.

So m[i] is a bound on the degreexpbccurring in the result of the multiplication.
2. Apply the trick.

Substitute ,_ )™~} in for x into f andg fori =n down to 2.

This results in two univariate polynomiafs( x; ) and § ( x1 ).

3. Use a ‘fast’ univariate multiplication routine find f (x) 0§ (xa).

4. Invert the substitution to obtain the multivegianswer.
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6.2.4 Example Using the Kronecker Trick, Trivariate  Case
Assume you have two polynomigdsandq. For illustration, we rewrite things sas the
variable with symbolic coefficients:

Pp=5y+XZ-x+1 =(F)X¥+ (2P -1x+1

q=X+ty-z+7 =@+t y-z+7)

Note the highest degree fgin pis 1 and img is 1. So we substitutg™*** = y* in for x
into both polynomials to arrive at:

p'=(®)) + (22 - 1)) + 1

a=Q))+y-z+7)

Simplifying and writing things sy is the variable with symbolic coefficients we see:
p'=(B)) + (2 -1)§) +1
q'=@3)) + (L)) + (2+7)

Looking back ap andqg we see the highest powerzif p is 2 and the highest power of
in qis 1. So we substitu@"*** = 7 in for y into p' andq' to get:

b =52°+ 2772+ 1

g =32+ -z+7

Using a “fast” univariate multiplication method vied:
p 0§ = 15"
+ 57 - &7° + 357° + 67° - 37
+278 7% 2/° + 1478 + 7P — 472

+7 —z+7

Notice that withx = y* andy = 7*, effectivelyx = Z*2. So to recover the symbolic
coefficients ofk we must invert the substitution trick by dividibg z*# until the quotient
becomes 0, where the remainder of the first diigiives us the coefficient fof, the
remainder of the second division gives us the @iefit forx', and so on. Thus:
p 0§ = (A=)
+ (22 - 52 + 35" + 62 - 3)¢
+(2° -7 - 22 + 1472 + 72— 4X
+@ -2+ 7)

Finishing the inversion we must now divide Byuntil the quotient becomes 0.
p 06 = (15y)X
+ ((BY + (-5 + 35) + (62 — 3) )¢
+((Z-1y+ (28 +14&+2-4) K
+(QAy+(=z+7))

Resulting in the correct answer of:

p 0§ = 15¢y + 53 — 5¢yz+ 35¢y + 637 — 3¢

+ XYyZ —Xy— XZ + 1&Z +Xz— &K +y—2+ 7
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7 Implementation of Division

Division can be a tricky thing when dealing withvamiate polynomials, and can become
even more difficult when dealing with multivarigtelynomials. One approach to solving
this problem is to always factor every polynontiays division becomes a simple matter
of canceling like terms. While this can be a gooldtson, if well implemented, it adds a
great deal of complexity to the code. For now wiejust consider the case that we are
given two polynomialsf andg, and need to know the resultfafivided byg.

Specifically we want to find the polynomiajsandr such that /g=q+r/g. In simpler
words, we want to find the quotieqtand the remainderwhenf is divided byg.

7.1 Lexicographical Ordering

The algorithm we are about to present assume®dtatpolynomials are
lexicographically ordered. As a refresher we wilkfty review what that means. Most of
this review is based on material found in [Ajwa 2P0

From a coding perspective, maintaining the lexiepyical ordering of a Polynom type
would best be done by making it a feature of whettéwnction adds Particles (terms) to a
Polynom type. Thus the Polynom would always bectayiaphically sorted. This will

make assignments slightly slower but will speedhgopdivision process, which is likely

to occur more frequently. On this same point @gsumed the variable names have some
form of alphabetical ordering imposed on them wiach Particle type. This was
mentioned above and illustrated by the needxyabe considered the same and stored
the same azaxy

Going back to the theoretical, we begin with arddin. Let N denote the (nonnegative)
integers. Letv andw be vectors in Rispace. Théexicographic ordering is defined as
V >ex W if and only if the leftmost nonzero entryvn— w positive.

For example ifv = (4, 3, 2) andv = (1, 3, 6) therv —w =( 3, 0, —4) and we conclude
that v >ex W because the leftmost nonnegative entry is positikasT we associate
these numbers with the terndy®Z andxy’Z we would say)’y’Z >, xy°Z. Notice this
should also imply that the order of the variables nasesnsistent and comparable. In
this particular case we assumedomes beforg which comes beforeas far as the order
of appearance.

Now applying this to a polynomial is best explained \sithexample. Assume

p(X, Y, 2) =y + zx+ Y + & —yXz — X2y

Then applying a lexicographic sorting we arrive at:

P(x, Y, D = XY'Z —xY 2+ Xy +xz+ X +y
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7.2 Division Algorithm for Two Polynomials
The below algorithm is a simplification of the Gerigel Division Algorithm as
presented in [Cox 1991] and described in [Ajw 1995].

Assumef andg are both non-zero polynomials (univariate or muliata).
Let p, g andr be polynomial data types.

1. Setq=0,r=0,p=f1

2. Repeat
a. If Lead Term o§ dividesp Then
. u=pl/g
i. g=q+u
. p=p—-(uly)
b. Else
i. r=r+Lead Term op.
ii. p=p-Lead Term op.
Untiilp=0

It should be noted that this algorithm assumes consistdering of terms of the
polynomials. It is recommended they be in a lexicoggplardering before attempting
this division.

8 Possible Advancements

Some obvious improvements in the abstraction of thivariate polynomial should
now be obvious. The first would be the addition of a frastional type to deal with the
cases where division of two polynomials fails to caé “even” (i.e. with no
remainder). This type might be declared as follows:

TYPE Polyfrac
Polynom numerator
Polynom denominator
END TYPE

Another obvious improvement would be the ability tal fihe zeros of a given polynom
(if any). This of course would be followed quickly by tality to solve systems of
polynoms, which might lead to a polynomial matrix cldss the sake of brevity,
simplicity and to encourage exploration, these improvésngil not be discussed here.

Also of importance would be input functions. These woulatyelepend on what type
of interface was desired. Most likely there would neeexist a function for the Polynom
type that would be able to parse a string into a Polyclass structure. This might be
done more easily if the Polynom class parsed thegstrin Particles and the Particle
class parsed a string into Atoms and Atoms parsed thg.str
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9 Conclusion

So there it is, a very simple multivariate polynomlaks. Hopefully, it should now be an
easy task to begin implementing your own version. Iragigendix of this document you
will find a basic version of the above Atom claspliemented in C++. It is not
necessarily the most efficient, but it will do.
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Appendix A — Atom.h

I
/I Atom.h

/I ©opyright 2004 Brent M. Dingle

I

/I Here is declared the ATOM - the most basic part
I
#ifndef _CATOM_BMD

#include <cstdlib>
#include <iostream>
#include <cctype>
#include <string>
#include “frac.h"

using namespace std;

1
/I TYPEDEFS

/I to use A_COEFF_TYPE = double you must do 2 thing

/I typedef A_COEFF_TYPE to double
/I define A_COEFF_IS_DOUBLE
1
typedef double A COEFF_TYPE;
typedef  long A_EXP_TYPE;

I
/I Some odd function declarations, so that we might
/I strings into the proper data types.

I

/I'lt is assumed exponents will be long and coeffs

/I but that may change.

I
#define  AsciiToExponent atol
#define  AsciiToCoeff  atof

1
/I CONSTANTS
1
/I It turns out bad things happen if we use a valid
/I when we just want to play with constants

/I So instead we use @

#define DEF_VAR_NAME '@'

1
/I Some global functions used by the CAtom class, b
/I to be useful enough NOT to embed in the class it

1
long SkipSpacesAndStar( const char *str,

bool GetExp(A_EXP_TYPE *exp, const char *str,
bool GetCoeff(A_COEFF_TYPE *coeff, const

void PostError(  const char *type, const

Multivariate Polynomial

long *index,

/I coefficients (numeric) type
/I exponent (numeric) type

convert

will be double

default var name

ut found

self.
long max_len);

long max_len);

long *index,

char *func_name, const char *message);

long max_len);
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1
1
class CAtom

friend  class CParticle;

public
1

CAtom();

CAtom( const CAtom& rhs);
CAtom( double coefficient);
CAtom(A_COEFF_TYPE coefficient,
CAtom(A_COEFF_TYPE coefficient,

/I multiplies defined in class CParticle

-- public functions
/I copy constructor

char name);
char name, A_EXP_TYPE exponent);

~CAtom();

A_COEFF_TYPE Eval(A_COEFF_TYPE value);
bool Set(A_COEFF_TYPE coefficient);

bool Set(A_COEFF_TYPE coefficient, char name);
bool Set(A_COEFF_TYPE coefficient, char name, A_EXP_TYPE exponent);
long ParseAndSet( const char *str, long start_index = 0);

bool Rename( char new_name);

bool InvertMe();

1 -- some operators
/I Output should be a global function, make the ope rator a friend
friend ostream& operator << ( ostream &, const CAtom& an_atom);

CAtom& operator =( const CAtom &rhs);
CAtom& operator =( const char *rhs_str);

/I see Particle.cpp for definition of * operator
/I do not define here as it MUST return a CParticle

/I but compiler required that CAtom declare the * o perator as

/I being able to function on atom * atom

friend  CParticle operator *( const CAtom& lhs, const CAtom& rhs);

1 -- public variables

A_COEFF_TYPE m_coeff;
A_EXP_TYPE m_exp;
char m_name;

private
A_COEFF_TYPE EvalPower(A_COEFF_TYPE value);

}, I/l end CAtom class

#define _CATOM_BMD
#endif

1
1
/I end Atom.h

Multivariate Polynomial
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Appendix B — Atom.cpp

1
/I Atom.cpp

/I Public Version 2004.04.21

/I ©opyright 2004 Brent M. Dingle

1

/I Here is defined the ATOM - the most basic part o

1

/I Notice we CANNOT add ATOMS together nor multiply
/I variable names, for that we create another class

/I where such functions (multiplies anyway) are def

/I Additions will require another class above CPart

1
#include "atom.h"

1
/I Constructor - default initialized coeff = 0, ex
1
CAtom::CAtom()

m_coeff = 0;

m_exp =0;

m_name = DEF_VAR_NAME;
}
1l

/I Constructor - if just a number is sent then expo
/I default to 0 and name to x, thus the CAtom is ju
/I because x"0 = 1
1
CAtom::CAtom(A_COEFF_TYPE coefficient)
{

m_coeff = coefficient;

m_exp =0;

m_name = DEF_VAR_NAME;
}

I
/I Constructor

/I - if a coeff AND a name is sent then exponent sh
I

CAtom::CAtom(A_COEFF_TYPE coefficient, char name)

{
m_coeff = coefficient;
m_exp =1;
m_name = name;

}

1
/I Constructor - all 3 items specified, no defaults
1

f a polynomial
atoms of different
called CParticle

ined.
icle called CPolynom

nent should
st a number

CAtom::CAtom(A_COEFF_TYPE coefficient, char name, A_EXP_TYPE exponent)

{
m_coeff = coefficient;
m_exp = exponent;
m_name = name;

}

1
/I copy constructor

1

/I This relies the assignment operator = being over
1
CAtom::CAtom( const CAtom &rhs)

* this =rhs;

Multivariate Polynomial
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I/
/I Destructor
I/
CAtom::~CAtom()

/I do nothing
}

1
I Set

1

/I This function works pretty much exactly like the
1
bool CAtom::Set(A_COEFF_TYPE coefficient)

m_coeff = coefficient;
m_exp =0;
m_name = DEF_VAR_NAME;

return  true ;
} //end Set - 1 param

1
bool CAtom::Set(A_COEFF_TYPE coefficient,
{

m_coeff = coefficient;

m_exp =1;

m_name = name;

return  true ;
} /l'end Set - 2 params

1
bool CAtom::Set(A_COEFF_TYPE coefficient,
{

m_coeff = coefficient;

m_exp = exponent;

m_name = name;

return  true ;
} /l'end Set - 3 params

I

CAtom& CAtom:: operator = ( const CAtom &rhs)

m_coeff = rhs.m_coeff;
m_name = rhs.m_name;
m_exp = rhs.m_exp;

return  * this ;

}
I

CAtom& CAtom:: operator = ( const char *rhs_str)

ParseAndSet(rhs_str);
return * this ;
}

1
/I ParseAndSet

/I Parse a string pulling out the coefficient, vari

/I and exponent.

1

/I Coeff defaults to 1 if not found

/I Variable name defaults to @ if not found

/I Exponent defaults to 0 if it AND var name are no
/I Exponent defaults to 1 if it is not found but a

1

/I String MUST be in the format [coeff][var_name]"[
/I exponent is in parentheses.

Multivariate Polynomial
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/I String MUST be NULL terminated.

Z Function returns the index of the first NOT used character

/I This is likely to be whatever comes after the en d paren

/I of an exponent - often NULL terminator

Z start_index defaults to zero;

I/(/)ng CAtom::ParseAndSet(  const char *str, long start_in(-j_é;)- ---------------------
long length, index;
if (str==NULL) { return false ;}

length = ( long )strlen(str);

if (start_index >= length) { return false ;}

index = start_index;

m_coeff=1;

GetCoeff(&m_coeff, str, &index, length); /I only sets m_coeff if number
/ found starting at str[index]
/I index will point at first
/I NON-numeric character

m_name = DEF_VAR_NAME; e’

m_exp = 0;

SkipSpacesAndStar(str, &index, length);
if (index < length)

{
if (isalpha(str[index]))
m_name = strfindex];
m_exp =1;
index++;
if (index < length)
{
if (strlindex] =="") /I have something maybe like x 27, or x *
SkipSpacesAndStar(str, &index, lengt h);
if (strlindex] ==""
GetExp(&m_exp, str, &index, length);
else if ((lisalpha(strlindex])) && (str[index] !="*") &&
(lisspace(str[index])) && (str [index] I="+") &&
(strlindex] !="-") && (str[in dex] 1=")1)
/I The ) is accepted to accomodate CPolyNom allowin g
/I parens around the entire poly - this to allow
/I CPolyfrac to parse easier
PostError("Error”, "CAtom::ParseAndS et",
"Atom is not followed by a nother var_name nor a *, +, - or
space");
index = length + 1; /I this should stop any further actions
}
}

}
}  /l'endifindex < length

return index;
} /' end ParseAndSet

Il e s e
/l Rename

/I Changes this atom's variable name to m_name.

/I Note - the exp and coeff stay whatever they are.

/I (zero and 1 unless they have been set)
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/I Returns false if current name is = DEF_VAR_NAME

o ——

bool CAtom::Rename( char new_name)

bool ret_val;
ret_val = true ;
if (m_name == DEF_VAR_NAME) { ret_val = false ; }

m_name = new_name;

return ret_val;
} /I end Rename

o —

/I Inverse

/I Set this atom to its inverse.

/I Effectively we make the exponent of the atom neg ative what
/I'it currently is and divide 1 by the coeff.

/I Notice this implies that our coeff types can be inverted in this way.

/I (so integers are out).

o ——

bool CAtom::InvertMe()

m_coeff = 1/ m_coeff; /I may need to alter to m_coeff.Inverse()
m_exp = -m_exp;

return  true ;
} /l'end inverse

o ——

/I Eval
/I Evaluate the value of the atom if its variable h as value sent.
/I This assumes that A_EXP_TYPE was an integer of s ome kind

e ——

A_COEFF_TYPE CAtom::Eval(A_COEFF_TYPE value)
A_COEFF_TYPE ret_val;
if (m_coeff ==0) /I this atom is zero no matter what
ret_val = 0;
else if (value==1)
ret_val = m_coeff; /I m_coeff * (1) anything
else if (m_exp==0)

/lret_val =value; /I x"0=1
ret_val = m_coeff; /I m_coeff * (value)*0

else if (value==0) /I zero to any power is zero, except 00 = 1

/I so put this check AFTER check on m_exp ==

ret_val = 0; /I m_coeff * 0"(any non-zero)
else if (value ==-1)

if (m_exp % 2==0)

{
ret_val = m_coeff; /I m_coeff * (-1)"(even power)
}
else
ret_val = -m_coeff; /I m_coeff * (-1)"(odd power)
}

}

else if (m_exp==1)
ret_val = m_coeff * value;

else if (m_exp==2)

Multivariate Polynomial
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{

ret_val = m_coeff * value * value;
else if (m_exp==3)
ret_val = m_coeff * value * value * value;

else

ret_val = m_coeff * EvalPower(value);

}

return ret_val;
} /l'end Eval

o —

/I EvalPower

/I Return value raised to m_exp

/I Notice we never do more than 1 multiply on a sin gle line.

/I This is in case CAtomNumber does not have suppor t for multiple
/I multiplies in a single line.

1

/I This also assumes A_EXP_TYPE to be an integer ty pe

e —

A_COEFF_TYPE CAtom::EvalPower(A_COEFF_TYPE value)
{
A_COEFF_TYPE square, cube, four;
A_COEFF_TYPE five, eight, nine, ten;
A_COEFF_TYPE twenty, thirty;
A_COEFF_TYPE ret_val;
bool had_neg_exp;
int i

ret_val = 0;

had_neg_exp = false ;
if (m_exp<0)

had_neg_exp = true ;
m_exp = -m_exp;

}
if (m_exp==0)
ret_val = 1;
else if (m_exp==1)
ret_val = value;

else if (m_exp==2)
{

ret_val = value * value;
else if (m_exp==23)

ret_val = value * value * value;
else
square = value * value;
cube = square * value;
four = square * square;
switch  (m_exp)

case 4:ret_val = four;
break ;

case 5:ret_val = four * value;
break ;
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case 6: ret_val = four * square;
break ;

case 7:ret_val = four * cube;
break ;

case 8: ret_val = four * four;
break ;

case 9:ret_val = cube * cube;
ret_val = ret_val * cube;
break ;

case 10: ret_val = cube * cube;
ret_val = ret_val * four;
break ;

case 11:ret_val = four * four;
ret_val = ret_val * cube;
break ;

case 12:ret_val = four * four;
ret_val = ret_val * four;
break ;

case 13:ret_val = cube * cube;
ret_val = ret_val * cube;
ret_val = ret_val * four;

break ;

case 14:ret_val = cube * cube;
ret_val = ret_val * four;
ret_val = ret_val * four;

break ;

default
five = four * value;
eight = four * four;

nine = eight * value;

ten = nine * value;
twenty = ten * ten;

thirty = ten * twenty;
switch  (m_exp)

{

case 15:ret_val = five * ten;

break ;

case 16: ret_val = five * value;
ret_val = ret_val * ten;

break ;

case 17:ret_val = cube * four;
ret_val = ret_val * ten;

break ;

case 18:ret_val = eight * ten;

case

case

case

case

case

case

case

case

19

20:

21:

22:

23:

24:

25

26

break ;
: ret_val = nine * ten;
break ;
ret_val = twenty;
break ;
ret_val = twenty * value;
break ;
ret_val = twenty * square;
break ;
ret_val = twenty * cube;
break ;
ret_val = twenty * four;
break ;
: ret_val = twenty * five;
break ;
: ret_val = five * value;

ret_val = ret_val * twenty;

break ;
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case

27: ret_val = four * cube;

ret_val = ret_val * twenty;

case

case

case

case

case

case

case

case

case

break ;

28: ret_val = twenty * eight;
break ;

29: ret_val = twenty * nine;
break ;

30: ret_val = thirty;
break ;

31: ret_val = thirty * value;
break ;

32: ret_val = thirty * square;
break ;

33: ret_val = thirty * cube;
break ;

34: ret_val = thirty * four,;
break ;

35: ret_val = thirty * five;
break ;

36: ret_val = five * value;

ret_val = ret_val * thirty;

case

break ;
37: ret_val = four * cube;

ret_val = ret_val * thirty;

case

case

case 40: ret_val = twenty * twenty;

break ;

38: ret_val = thirty * eight;
break ;

39: ret_val = thirty * nine;
break ;

break ;

default
ret_val = twenty * twenty;
for (i=41; i <= m_exp; i++)

{

ret_val=ret_val * value;

} /I end switch for m_exp = 15 to anything

} /I end switch for m_exp =4 to 14

}  Nlendifm_exp>=4

if (had_neg_exp)
{
m_exp = -m_exp;
if (ret_val !=0)
{

ret_val = 1/ ret_val,

}

else

PostError("Error", "CAtom::EvalPower", "Di

}
}

return ret_val;
} /' end EvalPower

I

/I Outputting stuff:

/I Invoked with cout << an_atom
/I which issues the call operator<< (cout, an_atom)

I

ostream& operator << (ostream& output,

if (an_atom.m_coeff == 0)

{

output << "0";

else if (an_atom.m_exp ==0)

{

Multivariate Polynomial
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output << an_atom.m_coeff;

else if (an_atom.m_coeff==1)

if (an_atom.m_exp !=1)

{
output << an_atom.m_name << "A(" << an_ato m.m_exp <<")";
}
else
{

output << an_atom.m_name;

}

else //if (an_atom.m_coeff!= 1) and !=0

if (an_atom.m_exp !=1)

{
output << an_atom.m_coeff << "*" << an_ato m.m_name << "A(" << an_atom.m_exp <<
"
}
else
{
output << an_atom.m_coeff << "*" << an_ato m.m_name;
}
}
return  output;
}
1
1
1
1 GLOBAL FUNCTIONS FOLLOW

I

I

I

1
/I SkipSpacesAndStar

/I Skip from index to max_len any spaces or asterix characters.
/I Alter index so it is on the first NON-space and NON-star char.

I

/I function returns the number of chars skipped

I

long SkipSpacesAndStar(  const
{

long count;
bool done;

done = false ;
count =0;
while (!done)

char *str, long *index, long max_len)

if ( (isspace(str[¥index])) || (str[*index] == "*) )

/I done stays false
*index = *index + 1;

count++;
}
else
{
done = true ;
}
if (*index >= max_len)
{
done = true ;
}

}
return  count;
} /I end SkipSpacesAndStar

Multivariate Polynomial
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o —

/I GetExp

/I This assumes A_EXP_TYPE is an integer.

/I If stris long enough and formed correctly exp i s set.

1

/I We should be at a point in the str where the fir st character

/l'is a caret = ” followed by an open paren = ( fol lowed by

/I 'a number of type corresponding to A_EXP_TYPE the n ending with a

/I closed paren =).

1

/I The parentheses are required in case the exponen t type is NOT

/' just a numeric.

1

/I This will still process an exponent without pare ntheses

/I HOWEVER it will do so assuming the exponent to b e an integer.

1

/' If not, nothing is done to exp, however value of index

/I may be altered and FALSE is returned.

e I
bool GetExp(A_EXP_TYPE *exp, const char *str, long *index, long max_len)
{

char num_str[200];
long local_index;
bool done;
bool ret_val;

ret_val = true ;
if (*index < max_len)

if (str[*index] == ")
*index = *index + 1; /I again don't use ++, with ptrs odd things happen =)
if (str[*index] =="") /I have something like x" 12

SkipSpacesAndStar(str, index, max_len);

if (str[*index] =="()

local_index = 0;

done = false ;
/I the -1 on max_len should be okay as last char on exp should be closed
paren
while ( ('done) && (local_index < 200) && (*index < max_ len-1))

*index = *index + 1;
if ( (isdigit(str[*index])) ||

(strl*index] == "-") || (str[*i ndex] ==""))
num_str[local_index] = str[*index 1;
}
else
{
done = true ;

local_index++;
num_str[local_index] = \0%;
/] *exp = atol(num_str);
*exp = AsciiToExponent(num_str); /I AsciiToExponent is defined in atom.h
/I And for nicety if we found an exponent we should
/I step index past that end paren
if (str[*index] ==")")
*index = *index + 1;

}

else // character after  is NOT a parentheses --> str[* index] '="('
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/I ASSUME exponent is a number and will terminate a t first NON-numeric
local_index = 0;
done = false ;

if (str[*index] =="-") /I only allow first char after ~ to be -, e.g. x"-

num_str[local_index] = str[*index];
local_index++;
*index = *index + 1;

}
while ( ('done) && (local_index < 200) && (*index < max_ len))

if ((isdigit(str[*index])) || (str[*index] ==".") )

num_str[local_index] = str[*index 1;
local_index++;
*index = *index + 1;

}
{

done = true ;
}
}

num_str[local_index] = \0%;
/I *exp = atol(num_str);
*exp = AsciiToExponent(num_str); /I AsciiToExponent is defined in atom.h

else

}
} I1if (str[*index] == "'

else
PostError("Error", "GetExp()", "Caret =" not found");
ret_val = false ;

}
}

return ret_val;
} // end GetExp

I o e
/I GetCoeff

/I'lt is assumed that index points to a spot in the string where a

/I number (of type corresponding to coeff type) beg ins.

1
/I'If no number is found coeff is set to be 1, else

/I we parse the string from index until nonnumeric characters are

/I encountered and then attempt to convert that str ing into a

/I number using the defined function AsciiToCoeff

1

/I When complete index should point at the first NO N-numeric character

I o e

bool GetCoeff(A_COEFF_TYPE *coeff, const char *str, long *index, long max_len)
{

char num_str[200];
long local_index;

bool done;
*coeff = 1; /Il default to 1
if ((str[*index] !="-") && (lisdigit(str[*index])) )
return  true ;
}
else

num_str[0] = str[*index];
*index = *index + 1; /I don't use ++, odd things happen with ptrs

}

/I Here we deal with the case of spaces between the sign
/I of the coeff and the numbers e.g. "- 34*b*d*e"
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if - ((num_str[0] == ") || (num_str[0] == '+))

SkipSpacesAndStar(str, index, max_len);

/I Now we need to check that we actually have numbe
/I we are NOT dealing with something like "-x*y*z"
if ((num_str[0] =="-") && (isalpha(str[*index])) )

*coeff = -1,
return  true ;

/I So we should now be on a number or a character (
local_index = 1;
done = false ;

while ( (*index < max_len) && (!done) )

if ((lisdigit(str[*index])) && (str[*index] !="."))

done = true ;

}

else

num_str[local_index] = str[*index];
*index = *index + 1;
local_index++;
}
}

num_str[local_index] = \0";

rs and

variable name)

*coeff = AsciiToCoeff(num_str); /I most likely *coeff = atof(num_str)

return  true ;
} /I end GetCoeff

1
/I PostError
1

void PostError(  const char *type, const char *func_name, const char *message)

{

cout << type << " - " << func_name << endl;
cout<<" " << message << endl;
cout << endl;

}

1
1
/I end Atom.cpp
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