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Abstract: 
The need for and usage of multivariate polynomials, and more generally Computer 
Algebra Systems, is readily seen in the popularity of programs such as Mathematica, 
Maple and Matlab. And while the need for the continued development of such systems is 
obviously advantageous to research efforts across most scientific and mathematical fields 
there has been a severe lack of educational effort made in teaching the methods necessary 
for designing such systems. This paper is written as a place to begin development of a 
(C++) class for supporting work with multivariate polynomials. There will not be much 
discussion on specific algorithms as the emphasis is to be on designing data structures to 
support a diverse number of algorithms. The hope is that given a starting point the 
development of new polynomial algorithms will be encouraged in younger computer 
scientists and programmers. 
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1   Introduction 
This paper is created as an aid to those who may find it necessary to create their own data 
types or classes to represent a multivariate polynomial. While this task has obviously 
been accomplished for many years, it is observed that there have been very few  
publications on the abstraction details necessary to accomplish the task (or at least such 
publications are not widely distributed). With this in mind this paper was written. Herein 
should be found a very basic and general outline of how to begin to code the classes 
necessary to model a multivariate polynomial. While there are many ways to do this, the 
method chosen here was based on simplicity and is presented at a novice level. It is 
hoped that from this simple starting point the beginning student might be able to advance 
his or her study in the art of programming, particularly towards the study of computer 
algebra or geometry related fields. 
 
The general layout of this paper begins with some basic definitions discussed in section 
2. In sections 3 and 4, it moves into univariate and multivariate representations and 
abstractions. Section 5 discusses the desired functionality and sections 6 and 7 present 
some possible ways to implement multiplication and division. Section 8 suggests some 
potential directions to continue and section 9 is a conclusion summary. Source code for 
some of the classes and functions, written in C++, can be found in the Appendices. 
 
 
 
 

2    What is a multivariate polynomial?  
For this paper it is first necessary to present some definitions. We will begin by defining 
a polynomial as an algebraic expression that is a sum of terms, where each term contains 
only variables with (nonnegative) integer exponents and real coefficients. Next we will 
define a univariate polynomial as a polynomial with one variable in each term and the 
variable in every term has the same name. Lastly, we will define a multivariate 
polynomial as a polynomial where each term may have one or more variables of different 
names and the variable names in any given term need not be identical to the variable 
names of any other term in the polynomial. 
 
For example the following are univariate polynomials: 

• x3 + 3x + 14 
• 53.6y2 + 12y 
• 936h23 + 14h6 – 34h2 + h – 3 

 
Whereas the below are multivariate polynomials: 

• x + y + 12 
• 7xyz + abc + x – 16c 
• x2 + 3xy – y2 + 4.5 
• –x3 – 3x – 14  
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Notice in the context of this paper univariate polynomials are a subset of multivariate 
polynomials. Note also that constants are considered to be multiplied by a variable raised 
to the zero power. Further we will be discussing things in terms of real numbers, though 
most everything should easily and naturally extend to complex numbers. 
 
 
 

3   Univariate Polynomial Representation 
In Computer Science it is a relatively easy task to write code to accommodate the usage 
of univariate polynomials. The most often used representation is that of an array or list of 
a type defined as: 
 
TYPE PolyTerm 

integer    exponent; 
 real       coefficient; 
END TYPE 
 
This makes things very nice to implement as all the variables are assumed to be the same 
name (e.g. x) in all terms of all the polynomials. So adding or subtracting polynomials is 
just a matter of searching for terms with the same exponent and adding or subtracting 
their coefficients. Multiplication and division are just a matter of properly modifying 
exponents. Notice dividing a single PolyTerm by another single PolyTerm might cause 
negative exponents to appear which stretches the mathematical definition of polynomial. 
Further division of two polynomials, each of multiple terms, only succeeds if the division 
results in no remainder. 
 
While these types of polynomials are useful for a large number of problems there often 
are times when more than one variable would be nice.  
 
 

4   Abstraction of Multivariate Polynomials 
4.1 The Atom 
Before beginning with code (or functionality) it is best to find a good abstraction of what 
is needed. Let us consider how to describe a multivariate polynomial. Obviously we need 
exponents and coefficients. We also will need a way to keep track of variable names. 
This leads to a basic type defined as: 
 
TYPE Atom 
 Integer  exponent 
     real     coefficent 
     char     var_name 
END TYPE 
 
Notice the type name of Atom has been used. This is mostly to emphasize a relationship 
of construction that will become more obvious as we continue. 
 



Multivariate Polynomial                                                                                       Dingle  3

4.2 Constants – Special Atoms 
An important design note is the realization that all constants should be associated with the 
same variable name. Even though any variable raised to the zero power is one, and thus 
5a0 + 10b0 = 15, that realization is not obvious for a computer when it is trying to find 
terms with the same variable names to add together. Thus for algorithmic reasons it 
would be best to use the same name for all constants. To do this it would be a good idea 
to reserve a variable name, say perhaps the at symbol, @, for usage only with constants. 
Thus the number zero as a type Atom would have an exponent of 0, a coefficient of 0 and 
a var_name of @. Likewise the number seven as a type Atom would have an exponent of 
0, a coefficient of 7 and a var_name of @. 
 
 
4.3 Particles 
Notice that our Atom type really only allows for a single variable, yet each term of a 
multivariate polynomial may have many variables of different names multiplied together. 
So now we need to be a little more creative. Let us consider some examples of atoms: 

• 3x3 
• 10y2 
• z 

 
Any of the above could be terms of a polynomial. But if we multiply them together, for 
example 3x3 ⋅ 10y2 we get 30x3y2 which could only be a term of a multivariate 
polynomial. This would seem obvious but not very meaningful. However, it gives a way 
we might represent terms of a polynomial. Specifically, assume we arbitrarily decided 
that 26 is the largest number of variable names capable of being used in a single term of a 
multivariate polynomial. Then we could define a new type as follows: 
 
TYPE Particle 
 Atom     atom_list[26] 
 integer  num_atoms 
END TYPE 
 
Our choice of Particle as the type name is because a particle would clearly be composed 
of atoms and thus our type names imply the relationship between the types. To be 
mathematically correct our particles are terms of a polynomial. As for the data structure 
itself , since we have assumed a maximum of 26 allowable variable names an array of 26 
atoms is sufficient to cover all possible particles and num_atoms would state specifically 
how many unique atoms the particle actually contains. This is a straightforward easy to 
implement method that wastes memory. So note that it could also be implemented as a 
list of atoms, rather than an array. 
 
 
4.3.1 Particle Coefficients 
Now the observant reader will immediately see that in this representation we might end 
up representing 30x3y2 as 3x310y2. This could be corrected by moving the coefficient out 
of the Atom type and placing it in the Particle type, but as long as we a careful in our 
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handling of the coefficients everything will work. Specifically if we set all the 
coefficients in atom_list[] to be one, except for atom_list[0]’s we will have no problem. It 
is noted that this does waste some memory, but in practice allows a little bit more 
flexibility in coding. 
 
 
4.3.1 Maintaining Order in a Particle 
Another important issue when creating particles will be maintaining the order of the 
variables in the list of atoms. For example it is necessary that the particle x2yz be 
recognized as identical to yx2z. The easiest way to achieve this is to always keep the 
variables names (the atoms) in a consistent order. The most obvious way to do this is 
alphabetically. Thus no matter what order the user enters the particle x2yz, whether it be 
as x2yz or as yx2z or as x2zy or any other permutation it will always be stored as x2yz. 
 
 
4.4 Polynomials 
Continuing, we see that our type particle defines a term of a multivariate polynomial 
rather well. Thus we conclude our abstract types with the following: 
 
TYPE Polynom 
 Particle   particle_list[] 
     integer    num_parts 
END TYPE 
 
Notice that we do not really want to place a maximum number of possible terms on our 
polynomial so we will leave the array size undefined to indicate that while we could 
define particle_list as an array we would prefer it to be a dynamic list. This is done so 
that in discussion we might refer to it as an array structure, though in actual 
implementation it would be better done as a list. Thus we have our abstract description of 
a multivariate polynomial, but what functionality should be applied to it? 
 
 
 

5   Functionality of Multivariate Polynomials 
There are many things we may want to do with our multivariate polynomials, but for now 
we will restrict ourselves to just the basics of input, output, addition, subtraction, 
multiplication, division and obtaining the results when some or all of the variables are 
assigned numeric values.  
 
It should be understood that the above types would make excellent classes in an object 
oriented language and it would be easy to associate functions with each type. Thus we 
will list and describe some, but certainly not all, of the basic functions or methods 
associated with each type. 
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5.1 Functions for the Atom  
For the Atom the following functions would be adequate: 

• A constructor. 
o For the constructor it would be nice to be able to construct an atom from 

just a constant (e.g. 12) or from a coefficient and a name (e.g. 8y) or from 
a coefficient, name and exponent (e.g. 23x3). 

• A method (or methods) to set the coefficient, exponent and name of the atom 
o These would be the trivially obvious methods. 

• A method to test for equality between two atoms 
o This would compare the exponent, coefficient and name of the two atoms. 

• A method to find the multiplicative inverse of the atom 
o This would take the numeric inverse of the coefficient and set the 

exponent to be the negative of its current value. 
• A method to find the additive inverse of the atom 

o This would simply make the coefficient of the atom be the negative of its 
current value. 

• A method to output the coefficient, exponent and name (the value) of the atom. 
o This would be an implementation dependent function, and would need to 

consider proper formatting. 
• A method to evaluate the numeric value of an atom if its variable was assigned a 

particular numeric value. 
o This method would require the most work to make it efficient, considering 

the exponents on the variable could be quite large (and might be positive 
or negative). The type of number returned most likely would be the same 
type as that assigned to the coefficient (e.g. real). 

 
 
5.2 Functions for the Particle  
For the Particle we need a little more functionality: 

• A constructor. 
o It would be nice to automatically initialize the particle to be zero, or to 

require an atom to be sent to the constructor. 
• A method to set the particle to an initial atom. 

o Most likely this method will be sent one or more atoms. 
• A way to put more variable names into the particle or remove variable names 

from the particle. 
o These tasks would most easily be done by the below multiply and divide 

functions, there would be little reason to duplicate them. Recall that the 
ORDER the atoms are placed in the particle must be consistent. This will 
likely require the comparison operators less than, <,  and greater than, >,  
to be implemented in the Atom class. 

• A method to multiply a particle by an atom. 
• A method to multiply a particle by another particle. 
• A method to divide a particle by an atom. 
• A method to divide a particle by another particle. 
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• A method to calculate the additive inverse of the particle. 
• A method to return the value of the particle if some or all of the variables of the 

particle are assigned values. 
o This method would at best be able to return a particle as an answer, since 

the user may wish to only assign some variables values. For example what 
is the value of 5x2yz if x = 2? The answer is 20yz which obviously is non-
numeric. 

• A method to determine if two particles are equal. 
o This method might not mean exact equality. In practice it is more useful to 

have an equality test to see if all the variables (and their exponents) match. 
This allows for a simple test to see if the two particles can be added or 
subtracted from one another. Having that test completed, to determine if 
they were exactly equal would be just a matter of testing their coefficients 
for equality. 

 
 
5.3 Functions for the Polynom  
Of course the functions for Polynom are even larger in number: 

• A constructor. 
o Which would be nice if it automatically initialized the polynom to zero, 

and might be made better if it could initialize it to an atom or particle sent. 
• A method to set the polynom. 

o This method would initialize a polynom based on an atom or particle sent. 
• A method to add (subtract) a particle. 

o This function would allow more ‘terms’ to be added to the polynom. 
While it is not obvious, it is important that the ORDER in which the 
particles are placed be consistent. A lexicographical ordering is probably 
best, and this will require the comparison operators < and > to be 
implemented in the Particle class. 

o This would require another function to determine if a given particle 
‘matched’ any of the particles in the polynom (if the particle does not 
match then a new term of the polynom is created, otherwise the matching 
particles are added together). This ‘matching’ would be described in the 
equality test function of a particles. 

• A method to add (subtract) a polynom. 
o This would add the particles of the sent polynom to the given polynom. 

• A method to multiply by a particle. 
o By the distributive law each particle of the polynom would be multiplied 

by the particle sent. 
• A method to multiply by a polynom. 

o Here it would be necessary to multiply each particle of the given polynom 
by each particle of the sent polynom. 

o It would also be necessary to correctly add any ‘like’ terms after the 
multiplication is performed – to keep the polynom as ‘simple’ as possible. 

• A method to divide by a particle. 
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o This would be a simple function which finds the multiplicative inverse of 
the sent particle and multiplies each particle of the given polynom by it. 

o Care would need to be taken for dividing by zero cases. 
• A method to divide by a polynom. 

o This would likely be the most complicated of all the methods and may not, 
in the end, be possible to perform (e.g. x3 / (y2 + 8z) ). 

o To get around this, it is possible to create a fraction class, where both the 
numerator and denominator are of type polynom. This would be the 
recommended easy solution (or this function may be skipped). Or perhaps 
the division would return two polynoms: a quotient and a remainder. 

• A method to return the value of a polynom if some or all of the variables are 
assigned specific numeric values. 

o Notice this could at best return a polynom since not all variables are 
guaranteed to be assigned a numeric value. 

 
 

6   Implementation of Multiplication 
Before beginning actual implementation it would be wise to study the various ways to 
perform polynomial multiplication – brute force, Fourier transforms, Karatsuba, etc. 
Likewise the various division, factoring and reduction methods should be studied – 
Groebner, Resultant, GCD, etc. 
 
For this paper we will discuss two possible multiplication methods: the brute force 
method and a Kroenecker Method. There will only be one division method mentioned 
and that is in section 7. It cannot be stressed enough that these operations will be the most 
often used, if their speed can be increased it would be a good idea to do so. The methods 
presented here are adequate for simple things, but will eventually fail to be “fast enough.” 
 
 
6.1   Brute Force Multiplication 
This is the most obvious and straightforward way to multiply two polynomials together. 
In current mathematically teaching it is similar to the FOIL (First Outer Inner Last) 
method. It goes like this:  
Given two univariate polynomials p and q such that  

 

p = ∑
=

⋅
n

i

i
i xa

0

  and q = ∑
=

⋅
m

i

i
i xb

0

 

 
Then 

 p ⋅ q = ∑ ∑+

= +=
⋅nm

k

k

jik
ji xba

0
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To implement the above the following code would suffice,  assuming p, q and c are all 
Polynoms and we want c = p ⋅ q. 

c = 0 
FOR k = 0 to m + n 
 cur_coeff = 0 
 FOR i = 0 to k 
  a = p.GetCoeff(‘x’, i) 
  b = q.GetCoeff(‘x’, k – i) 
  cur_coeff = cur_coeff + (a * b) 
 END FOR i 
 an_atom.Set(cur_coeff, ‘x’, k) 
 c.AddAtom(an_atom) 
END FOR k 

 
Where p.GetCoeff(‘x’, i) returns the coefficient of xi in the polynomial p, 
an_atom.Set(coeff, ‘x’, k) sets an_atom to have a coefficient of coeff, a variable name of 
x and a degree of k and p.AddAtom(an_atom) adds an_atom to the polynomial p. 
 
The above only works for univariate polynomials. For multivariate polynomials it is 
usually easiest just to perform the term by term (particle by particle) multiplication and 
add the result into the polynomial, with the expectation that the add function will 
combine like terms. Specifically the code might look like: 
 
  c = 0 
  FOR i = 1 to p.num_particles 
   p_part = p.GetParticle(i) 
   FOR j = 1 to q.num_particles 
    q_part = q.GetParticle(j) 
    c = c + (p_part * q_part) 
   END FOR j 
  END FOR i 
 
While this looks very similar to the univariate code it is likely much slower. Notice that 
the multiplication is a multiplication of particle types rather than numeric coefficients, 
which is slow. Further speed reduction is because the addition is an addition of polynom 
types which is much slower than adding two numeric types. In the end though, the above 
code will successfully multiply two polynomials. 
 
 
6.2   Krönecker Multiplication 
Because the brute force method is slow, particularly for multivariate multiplication, there 
has been extensive research into speeding it up. Back in the 1970s a particularly clever 
trick was advocated [Moe 76]. This trick was to map a multivariate multiplication into a 
univariate multiplication and then apply a fast method of univariate multiplication 
(preferably faster than the brute force one, but it will still work). An example (from  
[Moe 76] of this is as follows: 
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6.2.1 Example Using the Krönecker Trick, Bivariate Case 
Assume you have two polynomials 

p = 2xy + x – y + 2 
  q = xy + 3x + 4y – 3  
 
Rewriting things so x is the variable with symbolic coefficients we see that: 

p = (2y + 1)x + (–y + 2) 
  q = (y + 3)x + (4y – 3 ) 
 
Notice the highest degree of x in p is 1 and likewise the highest degree of x in q is also 1. 
Thus the highest degree of y that could occur in p ⋅ q is 1 + 1 = 2. We want to set x = yd 
such that d is greater than the highest degree of y that could occur in p ⋅ q. So we shall say 
d = 3 and  x = y3.  Substituting this in for x we obtain: 

p = (2y + 1)y3 + (–y + 2)   = 2y4 + y3 – y + 2 
  q = (y + 3)y3 + (4y – 3 )    = y4 + 3y3 + 4y – 3 
 
From here we would apply a “fast” univariate multiplication method to arrive at: 
 p⋅q = 2y8 + 7y7 + 3y6 + 7y5 – 3y4 + 3y3 – 4y2 + 11y – 6  
 
We then invert the substitution by dividing by y3 and examining the remainder and 
repeating the division on the quotient, until the quotient becomes zero: 
 

3

2345678 6114337372

y

yyyyyyyy −+−+−+++
 = 2y5 + 7y4 + 3y3 + 7y2 – 3y + 3 + 

3

2 6114

y

yy −+−
 

 
Which means our coefficient for the x0 is –4y2 + 11y – 6 and we continue: 
 

3

2345 337372

y

yyyyy +−+++
 = 2y2 + 7y + 3 + 

3

2 337

y

yy +−
 

 
So our coefficient for the x1 is 7y2 – 3y + 3 and we continue: 

3

2 372

y

yy ++
 = 0 + 

3

2 372

y

yy ++
 

 
And our coefficient for x2 is 2y2 + 7y + 3. Thus we conclude that 
(2xy+x–y+2) ⋅ (xy+3x+4y–3) = (2y2 + 7y + 3) x2 + (7y2 – 3y + 3)x + (–4y2 + 11y – 6) 
    = (2y2 + 7y + 3) x2 + (7y2 – 3y + 3)x + (–4y2 + 11y – 6) 
 
As the above inversion process involves only division and multiplication by atoms it 
should behave faster than explicit multiplication of multivariate polynomials. The proof 
this technique always works can be found in [Moe 76]. 
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6.2.2 Algorithm for the Krönecker Trick, Bivariate Case 
Here is the algorithm to use the Krönecker trick for the bivariate case. The general 
algorithm will be presented in the next section. This simple case is presented to assist in 
the understanding of the more general case. 
 
Let f(x, y) and g(x, y) be two polynomials. 
 

1. Let dy(f ) = the maximum degree of y in f(x, y). 
Let dy(g )  = the maximum degree of y in g(x, y). 
Let d = dy(f ) + dy(g ) + 1. 

 
2. Apply the trick: substitute yd in for x into f(x, y) and g(x, y) to obtain: 

f̂ ( y ) = f(yd, y) 
ĝ ( y ) = g(yd, y) 
 

3. Use a ‘fast’ univariate multiplication routine to find f̂ ( y ) ⋅ ĝ ( y ). 
 

4. Invert the substitution to obtain the multivariate answer. 
 
 
 
6.2.3 Algorithm for the Krönecker Trick, All Cases 
Let f and g be two polynomials in n variables. Name the variables xi for i = 1 to n. 
 

1. Let di( f ) = the maximum degree of variable xi found in f. 
Let di( g ) = the maximum degree of variable xi found in g. 
Let m[i] = di( f ) + di( g ) + 1.  
So m[i] is a bound on the degree of xi occurring in the result of the multiplication. 

 
2. Apply the trick. 

Substitute (xi – 1)
m[ i - 1 ] in for xi into f and g for i = n  down to 2. 

This results in two univariate polynomials f̂ ( x1 ) and ĝ ( x1 ). 
 

3. Use a ‘fast’ univariate multiplication routine to find f̂ ( x1 ) ⋅ ĝ ( x1 ). 
 

4. Invert the substitution to obtain the multivariate answer. 
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6.2.4 Example Using the Krönecker Trick, Trivariate  Case 
Assume you have two polynomials p and q. For illustration, we rewrite things so x is the 
variable with symbolic coefficients: 

p = 5x2y + 2xz2 – x + 1    = (5y)x2 + (2z2 – 1)x + 1 
  q = 3x + y – z + 7            = (3)x + (y – z + 7) 
 
Note the highest degree for y in p is 1 and in q is 1. So we substitute y1+1+1 = y3 in for x 
into both polynomials to arrive at: 

p' = (5y)(y3)2 + (2z2 – 1)(y3) + 1 
  q' = (3)(y3) + (y – z + 7) 
 
Simplifying and writing things so y is the variable with symbolic coefficients we see: 

p' = (5)(y7) + (2z2 – 1)(y3) + 1 
  q' = (3)(y3) + (1)(y) + (–z + 7)  
 
Looking back at p and q we see the highest power of z in p is 2 and the highest power of z 
in q is 1. So we substitute z2+1+1 = z4 in for y into p' and q' to get: 
 p̂  = 5z28 + 2z14 – z12 + 1 
 q̂  = 3z12 + z4 – z + 7 
 
Using a “fast” univariate multiplication method we find: 

p̂  ⋅ q̂   = 15z40  
+ 5z32 – 5z29 + 35z28 + 6z26 – 3z24  

+ 2z18 – z16 – 2z15 + 14z14 + z13 – 4z12   
  + z4 – z + 7 

 
Notice that with x = y3 and y = z4, effectively x = z12. So to recover the symbolic 
coefficients of x we must invert the substitution trick by dividing by z12 until the quotient 
becomes 0, where the remainder of the first division gives us the coefficient for x0, the 
remainder of the second division gives us the coefficient for x1, and so on. Thus: 

p̂  ⋅ q̂   = (15z4)x3  
   + (5z8 – 5z5 + 35z4 + 6z2 – 3)x2  
    + (2z6 – z4 – 2z3 + 14z2 + z – 4)x 
     + (z4 – z + 7) 
 
Finishing the inversion we must now divide by z4 until the quotient becomes 0.  

p̂  ⋅ q̂   = (15)y)x3  
   + ( (5)y2 + (–5z + 35)y + (6z2 – 3) )x2  
    + ( (2z2 – 1)y + (–2z3 + 14z2 + z – 4) )x 
     + ( (1)y + (–z + 7) ) 
 
Resulting in the correct answer of: 

p̂  ⋅ q̂   = 15x3y + 5x2y2 – 5x2yz + 35x2y + 6x2z2 – 3x2  
+ 2xyz2 – xy – 2xz3 + 14xz2 + xz – 4x + y – z + 7 
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7   Implementation of Division 
Division can be a tricky thing when dealing with univariate polynomials, and can become 
even more difficult when dealing with multivariate polynomials. One approach to solving 
this problem is to always factor every polynomial, thus division becomes a simple matter 
of canceling like terms. While this can be a good solution, if well implemented, it adds a 
great deal of complexity to the code. For now we will just consider the case that we are 
given two polynomials, f and g, and need to know the result of f divided by g. 
Specifically we want to find the polynomials q and r such that f / g = q + r / g. In simpler 
words, we want to find the quotient q and the remainder r when f is divided by g. 
 
 
7.1   Lexicographical Ordering 
The algorithm we are about to present assumes that both polynomials are 
lexicographically ordered. As a refresher we will briefly review what that means. Most of 
this review is based on material found in [Ajwa 2003].  
 
From a coding perspective, maintaining the lexicographical ordering of a Polynom type 
would best be done by making it a feature of whatever function adds Particles (terms) to a 
Polynom type. Thus the Polynom would always be lexicographically sorted. This will 
make assignments slightly slower but will speed up the division process, which is likely 
to occur more frequently. On this same point it is assumed the variable names have some 
form of alphabetical ordering imposed on them within each Particle type. This was 
mentioned above and illustrated by the need that xyz be considered the same and stored 
the same as zxy. 
 
Going back to the theoretical, we begin with a definition. Let N denote the (nonnegative) 
integers. Let v

�
 and w

�
 be vectors in Nn space. The lexicographic ordering is defined as 

v
�

 >lex w
�

 if and only if the leftmost nonzero entry in v
�

 – w
�

 positive. 
 
For example if  v

�
 = ( 4, 3, 2) and w

�
 = (1, 3, 6) then v

�
 – w

�
 = ( 3, 0, –4) and we conclude 

that v
�

 >lex w
�

 because the leftmost nonnegative entry is positive. Thus if we associate 
these numbers with the terms x4y3z2 and xy3z6 we would say x4y3z2 >lex xy3z6. Notice this 
should also imply that the order of the variables names is consistent and comparable. In 
this particular case we assumed x comes before y which comes before z as far as the order 
of appearance. 
 
Now applying this to a polynomial is best explained with an example. Assume  

p(x, y, z) = y + zx + yx2 + 2x – y2x3z – x3z2y4 
 
Then applying a lexicographic sorting we arrive at: 
 p(x, y, z) = –x3y4z2 – x3y2z + x2y + xz + 2x + y 
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7.2   Division Algorithm for Two Polynomials 
The below algorithm is a simplification of the Generalized Division Algorithm as 
presented in [Cox 1991] and described in [Ajw 1995]. 
 
Assume f and g are both non-zero polynomials (univariate or multivariate). 
Let p, q and r be polynomial data types. 
 

1. Set q = 0, r = 0, p = f 
2. Repeat 

a. If Lead Term of g divides p Then 
i. u = p / g 

ii. q = q + u 
iii. p = p – ( u ⋅ g ) 

 
b. Else 

i. r = r + Lead Term of p. 
ii. p = p – Lead Term of p. 

 
Until p = 0 

 
It should be noted that this algorithm assumes consistent ordering of terms of the 
polynomials. It is recommended they be in a lexicographical ordering before attempting 
this division. 
 
 

8   Possible Advancements 
Some obvious improvements in the abstraction of the multivariate polynomial should 
now be obvious. The first would be the addition of a new fractional type to deal with the 
cases where division of two polynomials fails to come out “even” (i.e. with no 
remainder). This type might be declared as follows: 
 
TYPE Polyfrac 
 Polynom   numerator 
  Polynom   denominator 
END TYPE 
 
Another obvious improvement would be the ability to find the zeros of a given polynom 
(if any). This of course would be followed quickly by the ability to solve systems of 
polynoms, which might lead to a polynomial matrix class. For the sake of brevity, 
simplicity and to encourage exploration, these improvements will not be discussed here. 
 
Also of importance would be input functions. These would greatly depend on what type 
of interface was desired. Most likely there would need to exist a function for the Polynom 
type that would be able to parse a string into a Polynom class structure. This might be 
done more easily if the Polynom class parsed the string into Particles and the Particle 
class parsed a string into Atoms and Atoms parsed the string. 
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9   Conclusion 
So there it is, a very simple multivariate polynomial class. Hopefully, it should now be an 
easy task to begin implementing your own version. In the appendix of this document you 
will find a basic version of the above Atom class implemented in C++. It is not 
necessarily the most efficient, but it will do. 
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Appendix A – Atom.h 
 
// ------------------------------------------------ --------------------------- 
// Atom.h 
// ©opyright 2004 Brent M. Dingle 
// 
// Here is declared the ATOM - the most basic part of a polynomial 
// ------------------------------------------------ --------------------------- 
#ifndef  _CATOM_BMD 
 
#include  <cstdlib> 
#include  <iostream> 
#include  <cctype> 
#include  <string> 
#include  "frac.h" 
 
using  namespace  std; 
 
// ------------------------------------------------ --------------------------- 
// TYPEDEFS 
// to use A_COEFF_TYPE = double you must do 2 thing s: 
// typedef A_COEFF_TYPE to double 
// define A_COEFF_IS_DOUBLE 
// ------------------------------------------------ --------------------------- 
typedef  double    A_COEFF_TYPE;   // coefficients (numeric) type 
typedef  long      A_EXP_TYPE;     // exponent (numeric) type 
 
 
// ------------------------------------------------ --------------------------- 
// Some odd function declarations, so that we might  convert 
// strings into the proper data types. 
// 
// It is assumed exponents will be long and coeffs will be double 
// but that may change. 
// ------------------------------------------------ --------------------------- 
#define  AsciiToExponent   atol 
#define  AsciiToCoeff      atof 
 
 
// ------------------------------------------------ --------------------------- 
// CONSTANTS 
// ------------------------------------------------ --------------------------- 
// It turns out bad things happen if we use a valid  default var name 
// when we just want to play with constants 
// So instead we use @ 
#define  DEF_VAR_NAME   '@' 
 
 
// ------------------------------------------------ --------------------------- 
// Some global functions used by the CAtom class, b ut found 
// to be useful enough NOT to embed in the class it self. 
// ------------------------------------------------ --------------------------- 
long  SkipSpacesAndStar( const  char  *str, long  *index, long  max_len); 
bool  GetExp(A_EXP_TYPE *exp, const  char  *str, long  *index, long  max_len); 
bool  GetCoeff(A_COEFF_TYPE *coeff, const  char  *str, long  *index, long  max_len); 
 
void  PostError( const  char  *type, const  char  *func_name, const  char  *message); 
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// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
class  CAtom 
{ 
   friend  class  CParticle;   // multiplies defined in class CParticle 
 
public : 
   // ------------------------------------------------ -- public functions 
   CAtom(); 
   CAtom( const  CAtom& rhs);          // copy constructor 
   CAtom( double  coefficient); 
   CAtom(A_COEFF_TYPE coefficient, char  name); 
   CAtom(A_COEFF_TYPE coefficient, char  name, A_EXP_TYPE exponent); 
   ~CAtom(); 
 
   A_COEFF_TYPE Eval(A_COEFF_TYPE value); 
   bool  Set(A_COEFF_TYPE coefficient); 
   bool  Set(A_COEFF_TYPE coefficient, char  name); 
   bool  Set(A_COEFF_TYPE coefficient, char  name, A_EXP_TYPE exponent); 
 
   long  ParseAndSet( const  char  *str, long  start_index = 0); 
   bool  Rename( char  new_name); 
 
   bool  InvertMe(); 
 
   // ------------------------------------------------ -- some operators 
   // Output should be a global function, make the ope rator a friend 
   friend  ostream& operator << ( ostream &, const  CAtom& an_atom); 
   CAtom& operator = ( const  CAtom &rhs); 
   CAtom& operator = ( const  char  *rhs_str); 
 
   // see Particle.cpp for definition of * operator 
   // do not define here as it MUST return a CParticle , 
   // but compiler required that CAtom declare the * o perator as 
   // being able to function on atom * atom 
   friend  CParticle operator  * ( const  CAtom& lhs, const  CAtom& rhs); 
 
 
   // ------------------------------------------------ -- public variables 
   A_COEFF_TYPE   m_coeff; 
   A_EXP_TYPE     m_exp; 
   char            m_name; 
 
private : 
   A_COEFF_TYPE EvalPower(A_COEFF_TYPE value); 
 
};  // end CAtom class 
 
#define  _CATOM_BMD 
#endif 
 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
// end Atom.h 
     

 
 
 
 
 
 
 
 
 
 



Multivariate Polynomial                                                                                       Dingle  17

Appendix B – Atom.cpp 
 
// ------------------------------------------------ --------------------------- 
// Atom.cpp 
// Public Version 2004.04.21 
// ©opyright 2004 Brent M. Dingle 
// 
// Here is defined the ATOM - the most basic part o f a polynomial 
// 
// Notice we CANNOT add ATOMS together nor multiply  atoms of different 
// variable names, for that we create another class  called CParticle 
// where such functions (multiplies anyway) are def ined. 
// Additions will require another class above CPart icle called CPolynom 
// ------------------------------------------------ --------------------------- 
#include  "atom.h" 
 
// ------------------------------------------------ --------------------------- 
// Constructor  - default initialized coeff = 0, ex p = 0, name = @ 
// ------------------------------------------------ --------------------------- 
CAtom::CAtom() 
{ 
   m_coeff = 0; 
   m_exp = 0; 
   m_name = DEF_VAR_NAME; 
} 
 
// ------------------------------------------------ --------------------------- 
// Constructor - if just a number is sent then expo nent should 
// default to 0 and name to x, thus the CAtom is ju st a number 
// because x^0 = 1 
// ------------------------------------------------ --------------------------- 
CAtom::CAtom(A_COEFF_TYPE coefficient) 
{ 
   m_coeff = coefficient; 
   m_exp = 0; 
   m_name = DEF_VAR_NAME; 
} 
 
// ------------------------------------------------ --------------------------- 
// Constructor  
// - if a coeff AND a name is sent then exponent sh ould default to 1 
// ------------------------------------------------ --------------------------- 
CAtom::CAtom(A_COEFF_TYPE coefficient, char  name) 
{ 
   m_coeff = coefficient; 
   m_exp = 1; 
   m_name = name; 
} 
 
// ------------------------------------------------ --------------------------- 
// Constructor - all 3 items specified, no defaults  
// ------------------------------------------------ --------------------------- 
CAtom::CAtom(A_COEFF_TYPE coefficient, char  name, A_EXP_TYPE exponent) 
{ 
   m_coeff = coefficient; 
   m_exp = exponent; 
   m_name = name; 
} 
 
// ------------------------------------------------ --------------------------- 
// copy constructor 
// 
// This relies the assignment operator = being over ridden 
// ------------------------------------------------ --------------------------- 
CAtom::CAtom( const  CAtom &rhs) 
{ 
   * this  = rhs; 
} 
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// ------------------------------------------------ --------------------------- 
// Destructor 
// ------------------------------------------------ --------------------------- 
CAtom::~CAtom() 
{ 
   // do nothing 
} 
 
// ------------------------------------------------ --------------------------- 
// Set 
// 
// This function works pretty much exactly like the  constructors. 
// ------------------------------------------------ --------------------------- 
bool  CAtom::Set(A_COEFF_TYPE coefficient) 
{ 
   m_coeff = coefficient; 
   m_exp = 0; 
   m_name = DEF_VAR_NAME; 
 
   return  true ; 
} // end Set - 1 param 
 
// ------------------------------------------------ --------------------------- 
bool  CAtom::Set(A_COEFF_TYPE coefficient, char  name) 
{ 
   m_coeff = coefficient; 
   m_exp = 1; 
   m_name = name; 
 
   return  true ; 
} // end Set - 2 params 
 
// ------------------------------------------------ --------------------------- 
bool  CAtom::Set(A_COEFF_TYPE coefficient, char  name, A_EXP_TYPE exponent) 
{ 
   m_coeff = coefficient; 
   m_exp = exponent; 
   m_name = name; 
 
   return  true ; 
} // end Set - 3 params 
 
// ------------------------------------------------ --------------------------- 
CAtom& CAtom:: operator = ( const  CAtom &rhs)  
{ 
   m_coeff = rhs.m_coeff; 
   m_name = rhs.m_name; 
   m_exp = rhs.m_exp; 
 
   return  * this ; 
} 
 
// ------------------------------------------------ --------------------------- 
CAtom& CAtom:: operator = ( const  char  *rhs_str) 
{ 
   ParseAndSet(rhs_str); 
   return  * this ; 
} 
 
// ------------------------------------------------ --------------------------- 
// ParseAndSet 
// Parse a string pulling out the coefficient, vari able name 
// and exponent. 
// 
// Coeff defaults to 1 if not found 
// Variable name defaults to @ if not found 
// Exponent defaults to 0 if it AND var name are no t found 
// Exponent defaults to 1 if it is not found but a var name is 
// 
// String MUST be in the format [coeff][var_name]^[ (exponent)] 
// exponent is in parentheses. 
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// String MUST be NULL terminated. 
// 
// Function returns the index of the first NOT used  character 
// This is likely to be whatever comes after the en d paren 
// of an exponent - often NULL terminator 
// 
// start_index defaults to zero; 
// ------------------------------------------------ --------------------------- 
long  CAtom::ParseAndSet( const  char  *str, long  start_index) 
{ 
   long  length, index; 
 
   if  (str == NULL) { return  false ; } 
 
   length = ( long )strlen(str); 
 
   if  (start_index >= length) { return  false ; } 
 
   index = start_index; 
   m_coeff = 1; 
   GetCoeff(&m_coeff, str, &index, length); // only sets m_coeff if number  
                                            // found starting at str[index] 
                                            // index will point at first  
                                            // NON-numeric character 
   m_name = DEF_VAR_NAME;  // '@' 
   m_exp = 0; 
 
   SkipSpacesAndStar(str, &index, length); 
   if  (index < length) 
   { 
      if  (isalpha(str[index])) 
      { 
         m_name = str[index]; 
         m_exp = 1; 
         index++; 
         if  (index < length) 
         { 
            if  (str[index] == ' ')   // have something maybe like x ^7, or x *  
            { 
               SkipSpacesAndStar(str, &index, lengt h); 
            } 
 
            if  (str[index] == '^') 
            { 
               GetExp(&m_exp, str, &index, length);  
            } 
            else  if  ((!isalpha(str[index])) && (str[index] != '*') && 
                     (!isspace(str[index])) && (str [index] != '+') && 
                     (str[index] != '-') && (str[in dex] != ')')) 
            { 
               // The ) is accepted to accomodate CPolyNom allowin g 
               // parens around the entire poly - this to allow 
               // CPolyfrac to parse easier 
               PostError("Error", "CAtom::ParseAndS et", 
                         "Atom is not followed by a nother var_name nor a *, +, - or 
space"); 
 
               index = length + 1;   // this should stop any further actions 
            } 
         } 
      } 
   } // end if index < length 
 
   return  index; 
} // end ParseAndSet 
 
// ------------------------------------------------ --------------------------- 
// Rename 
// Changes this atom's variable name to m_name. 
// Note - the exp and coeff stay whatever they are.  
// (zero and 1 unless they have been set) 
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// Returns false if current name is = DEF_VAR_NAME 
// ------------------------------------------------ --------------------------- 
bool  CAtom::Rename( char  new_name) 
{ 
   bool  ret_val; 
 
   ret_val = true ; 
   if  (m_name == DEF_VAR_NAME) {   ret_val = false ;   } 
   m_name = new_name; 
 
   return  ret_val; 
} // end Rename 
 
// ------------------------------------------------ --------------------------- 
// Inverse 
// Set this atom to its inverse. 
// Effectively we make the exponent of the atom neg ative what 
// it currently is and divide 1 by the coeff. 
// Notice this implies that our coeff types can be inverted in this way. 
// (so integers are out). 
// ------------------------------------------------ --------------------------- 
bool  CAtom::InvertMe() 
{ 
   m_coeff = 1 / m_coeff;   // may need to alter to m_coeff.Inverse() 
   m_exp = -m_exp; 
 
   return  true ; 
} // end inverse 
 
// ------------------------------------------------ --------------------------- 
// Eval 
// Evaluate the value of the atom if its variable h as value sent. 
// This assumes that A_EXP_TYPE was an integer of s ome kind 
// ------------------------------------------------ --------------------------- 
A_COEFF_TYPE CAtom::Eval(A_COEFF_TYPE value) 
{ 
   A_COEFF_TYPE ret_val; 
 
   if  (m_coeff == 0)         // this atom is zero no matter what 
   { 
      ret_val = 0; 
   } 
   else  if  (value == 1) 
   { 
      ret_val = m_coeff;     // m_coeff * (1)^anything 
   } 
   else  if  (m_exp == 0) 
   { 
      //ret_val = value;     // x^0 = 1 
      ret_val = m_coeff;     // m_coeff * (value)^0 
   } 
   else  if  (value == 0)      // zero to any power is zero, except 0^0 = 1 
   {                         // so put this check AFTER check on m_exp == 0 
      ret_val = 0;           // m_coeff * 0^(any non-zero) 
   } 
   else  if  (value == -1) 
   { 
      if  (m_exp % 2 == 0) 
      { 
         ret_val = m_coeff;    // m_coeff * (-1)^(even power) 
      } 
      else 
      { 
         ret_val = -m_coeff;    // m_coeff * (-1)^(odd power) 
      } 
   } 
   else  if  (m_exp == 1) 
   { 
      ret_val = m_coeff * value; 
   } 
   else  if  (m_exp == 2) 
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   { 
      ret_val = m_coeff * value * value; 
   } 
   else  if  (m_exp == 3) 
   { 
      ret_val = m_coeff * value * value * value; 
   } 
   else 
   { 
      ret_val = m_coeff * EvalPower(value); 
   } 
 
   return  ret_val; 
} // end Eval 
 
// ------------------------------------------------ --------------------------- 
// EvalPower 
// Return value raised to m_exp 
// Notice we never do more than 1 multiply on a sin gle line. 
// This is in case CAtomNumber does not have suppor t for multiple 
// multiplies in a single line. 
// 
// This also assumes A_EXP_TYPE to be an integer ty pe 
// ------------------------------------------------ --------------------------- 
A_COEFF_TYPE CAtom::EvalPower(A_COEFF_TYPE value) 
{ 
   A_COEFF_TYPE square, cube, four; 
   A_COEFF_TYPE five, eight, nine, ten; 
   A_COEFF_TYPE twenty, thirty; 
   A_COEFF_TYPE ret_val; 
   bool  had_neg_exp; 
   int   i; 
 
   ret_val = 0; 
 
   had_neg_exp = false ; 
   if  (m_exp < 0) 
   { 
      had_neg_exp = true ; 
      m_exp = -m_exp; 
   } 
 
   if  (m_exp == 0) 
   { 
      ret_val = 1; 
   } 
   else  if  (m_exp == 1) 
   { 
      ret_val = value; 
   } 
   else  if  (m_exp == 2) 
   { 
      ret_val = value * value; 
   } 
   else  if  (m_exp == 3) 
   { 
      ret_val = value * value * value; 
   } 
   else 
   { 
      square = value * value; 
      cube = square * value; 
      four = square * square; 
      switch  (m_exp) 
      { 
         case  4: ret_val = four;  
                 break ; 
 
         case  5: ret_val = four * value; 
                 break ; 
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         case  6: ret_val = four * square; 
                 break ; 
 
         case  7: ret_val = four * cube; 
                 break ; 
 
         case  8: ret_val = four * four; 
                 break ; 
          
         case  9: ret_val = cube * cube; 
                 ret_val = ret_val * cube; 
                 break ; 
 
         case  10: ret_val = cube * cube; 
                  ret_val = ret_val * four; 
                  break ; 
 
         case  11: ret_val = four * four; 
                  ret_val = ret_val * cube; 
                  break ; 
 
         case  12: ret_val = four * four; 
                  ret_val = ret_val * four; 
                  break ; 
 
         case  13: ret_val = cube * cube; 
                  ret_val = ret_val * cube; 
                  ret_val = ret_val * four; 
                  break ; 
 
         case  14: ret_val = cube * cube; 
                  ret_val = ret_val * four; 
                  ret_val = ret_val * four; 
                  break ; 
 
         default : 
            five = four * value; 
            eight = four * four; 
            nine = eight * value; 
            ten = nine * value; 
            twenty = ten * ten; 
            thirty = ten * twenty; 
            switch  (m_exp) 
            { 
               case  15: ret_val = five * ten; 
                        break ; 
               case  16: ret_val = five * value; 
                        ret_val = ret_val * ten; 
                        break ; 
               case  17: ret_val = cube * four; 
                        ret_val = ret_val * ten; 
                        break ; 
               case  18: ret_val = eight * ten; 
                        break ; 
               case  19: ret_val = nine * ten; 
                        break ; 
               case  20: ret_val = twenty; 
                        break ; 
               case  21: ret_val = twenty * value; 
                        break ; 
               case  22: ret_val = twenty * square; 
                        break ; 
               case  23: ret_val = twenty * cube; 
                        break ; 
               case  24: ret_val = twenty * four; 
                        break ; 
               case  25: ret_val = twenty * five; 
                        break ; 
               case  26: ret_val = five * value; 
                        ret_val = ret_val * twenty;  
                        break ; 
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               case  27: ret_val = four * cube; 
                        ret_val = ret_val * twenty;  
                        break ; 
               case  28: ret_val = twenty * eight; 
                        break ; 
               case  29: ret_val = twenty * nine; 
                        break ; 
               case  30: ret_val = thirty; 
                        break ; 
               case  31: ret_val = thirty * value; 
                        break ; 
               case  32: ret_val = thirty * square; 
                        break ; 
               case  33: ret_val = thirty * cube; 
                        break ; 
               case  34: ret_val = thirty * four; 
                        break ; 
               case  35: ret_val = thirty * five; 
                        break ; 
               case  36: ret_val = five * value; 
                        ret_val = ret_val * thirty;  
                        break ; 
               case  37: ret_val = four * cube; 
                        ret_val = ret_val * thirty;  
                        break ; 
               case  38: ret_val = thirty * eight; 
                        break ; 
               case  39: ret_val = thirty * nine; 
                        break ; 
               case  40: ret_val = twenty * twenty; 
                        break ; 
               default : 
                  ret_val = twenty * twenty; 
                  for  (i=41; i <= m_exp; i++)   // was just < until 3-25-04 
                  { 
                     ret_val= ret_val * value;  // in case A_COEFF_TYPE doesn't like *= 
                  } 
            } // end switch for m_exp = 15 to anything 
      } // end switch for m_exp = 4 to 14 
 
   } // end if m_exp >= 4 
 
   if  (had_neg_exp) 
   { 
      m_exp = -m_exp; 
      if  (ret_val != 0) 
      { 
         ret_val = 1 / ret_val; 
      } 
      else 
      { 
         PostError("Error", "CAtom::EvalPower", "Di vide by Zero"); 
      } 
   } 
 
   return  ret_val; 
} // end EvalPower 
 
// ------------------------------------------------ --------------------------- 
// Outputting stuff: 
// Invoked with cout << an_atom 
// which issues the call operator<< (cout, an_atom)  
// ------------------------------------------------ --------------------------- 
ostream& operator << (ostream& output, const  CAtom& an_atom) 
{ 
   if  (an_atom.m_coeff == 0) 
   { 
      output << "0"; 
   } 
   else  if  (an_atom.m_exp == 0) 
   { 
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      output << an_atom.m_coeff; 
   } 
   else  if  (an_atom.m_coeff == 1) 
   { 
      if  (an_atom.m_exp != 1) 
      { 
         output << an_atom.m_name << "^(" << an_ato m.m_exp << ")"; 
      } 
      else 
      { 
         output << an_atom.m_name; 
      } 
   } 
   else  //if (an_atom.m_coeff != 1) and != 0 
   { 
      if  (an_atom.m_exp != 1) 
      { 
         output << an_atom.m_coeff << "*" << an_ato m.m_name << "^(" << an_atom.m_exp << 
")"; 
      } 
      else 
      { 
         output << an_atom.m_coeff << "*" << an_ato m.m_name; 
      } 
   } 
 
   return  output; 
} 
 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
//                        GLOBAL FUNCTIONS FOLLOW 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
// SkipSpacesAndStar 
// Skip from index to max_len any spaces or asterix  characters. 
// Alter index so it is on the first NON-space and NON-star char. 
// 
// function returns the number of chars skipped 
// ------------------------------------------------ --------------------------- 
long  SkipSpacesAndStar( const  char  *str, long  *index, long  max_len) 
{ 
   long  count; 
   bool  done; 
 
   done = false ; 
   count = 0; 
   while  (!done) 
   { 
      if  ( (isspace(str[*index])) || (str[*index] == '*') )  
      { 
         // done stays false 
         *index = *index + 1;  // don't use ++ it does goofy things with pointers =) 
         count++; 
      } 
      else 
      { 
         done = true ; 
      } 
 
      if  (*index >= max_len) 
      { 
         done = true ; 
      } 
   } 
   return  count; 
} // end SkipSpacesAndStar 
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// ------------------------------------------------ --------------------------- 
// GetExp 
// This assumes A_EXP_TYPE is an integer. 
// If str is long enough and formed correctly exp i s set. 
// 
// We should be at a point in the str where the fir st character 
// is a caret = ^ followed by an open paren = ( fol lowed by 
// a number of type corresponding to A_EXP_TYPE the n ending with a 
// closed paren = ). 
// 
// The parentheses are required in case the exponen t type is NOT 
// just a numeric. 
// 
// This will still process an exponent without pare ntheses 
// HOWEVER it will do so assuming the exponent to b e an integer. 
// 
// If not, nothing is done to exp, however value of  index 
// may be altered and FALSE is returned. 
// ------------------------------------------------ --------------------------- 
bool  GetExp(A_EXP_TYPE *exp, const  char  *str, long  *index, long  max_len) 
{ 
   char  num_str[200]; 
   long  local_index; 
   bool  done; 
   bool  ret_val; 
 
   ret_val = true ; 
   if  (*index < max_len) 
   { 
      if  (str[*index] == '^') 
      { 
         *index = *index + 1;     // again don't use ++, with ptrs odd things happen =) 
 
         if  (str[*index] == ' ')  // have something like x^ 12 
         { 
            SkipSpacesAndStar(str, index, max_len);  
         } 
 
         if  (str[*index] == '(') 
         { 
            local_index = 0; 
            done = false ; 
            // the -1 on max_len should be okay as last char on  exp should be closed 
paren 
            while  ( (!done) && (local_index < 200) && (*index < max_ len-1)) 
            { 
               *index = *index + 1; 
               if  ( (isdigit(str[*index])) || 
                    (str[*index] == '-') || (str[*i ndex] == '.') ) 
               { 
                  num_str[local_index] = str[*index ]; 
               } 
               else 
               { 
                  done = true ; 
               } 
               local_index++; 
            } 
            num_str[local_index] = '\0'; 
            // *exp = atol(num_str); 
            *exp = AsciiToExponent(num_str);  // AsciiToExponent is defined in atom.h 
 
            // And for nicety if we found an exponent we should  
            // step index past that end paren 
            if  (str[*index] == ')') 
            { 
               *index = *index + 1; 
            } 
 
         } 
         else  // character after ^ is NOT a parentheses --> str[* index] != '(' 
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         { 
            // ASSUME exponent is a number and will terminate a t first NON-numeric 
            local_index = 0; 
            done = false ; 
            if  (str[*index] == '-') // only allow first char after ^ to be -,  e.g. x^- 1 
            { 
               num_str[local_index] = str[*index]; 
               local_index++; 
               *index = *index + 1; 
            } 
 
            while  ( (!done) && (local_index < 200) && (*index < max_ len)) 
            { 
               if  ( (isdigit(str[*index])) || (str[*index] == '.') )  
               { 
                  num_str[local_index] = str[*index ]; 
                  local_index++; 
                  *index = *index + 1; 
               } 
               else 
               { 
                  done = true ; 
               } 
            } 
 
            num_str[local_index] = '\0'; 
            // *exp = atol(num_str); 
            *exp = AsciiToExponent(num_str);  // AsciiToExponent is defined in atom.h 
         } 
      } // if (str[*index] == '^') 
      else 
      { 
         PostError("Error", "GetExp()", "Caret = ^ not found"); 
         ret_val = false ; 
      } 
   } 
   return  ret_val; 
} // end GetExp 
 
// ------------------------------------------------ --------------------------- 
// GetCoeff 
// It is assumed that index points to a spot in the  string where a 
// number (of type corresponding to coeff type) beg ins. 
// 
// If no number is found coeff is set to be 1, else  
// we parse the string from index until nonnumeric characters are 
// encountered and then attempt to convert that str ing into a 
// number using the defined function AsciiToCoeff 
// 
// When complete index should point at the first NO N-numeric character 
// ------------------------------------------------ --------------------------- 
bool  GetCoeff(A_COEFF_TYPE *coeff, const  char  *str, long  *index, long  max_len) 
{ 
   char  num_str[200]; 
   long  local_index; 
   bool  done; 
 
   *coeff = 1;  // default to 1 
 
   if  ( (str[*index] != '-') && (!isdigit(str[*index])) ) 
   { 
      return  true ; 
   } 
   else 
   { 
      num_str[0] = str[*index]; 
      *index = *index + 1;        // don't use ++, odd things happen with ptrs 
   } 
 
   // Here we deal with the case of spaces between the  sign 
   // of the coeff and the numbers e.g. "- 34*b*d*e" 
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   if  ((num_str[0] == '-') || (num_str[0] == '+')) 
   { 
      SkipSpacesAndStar(str, index, max_len); 
   } 
 
   // Now we need to check that we actually have numbe rs and 
   // we are NOT dealing with something like "-x*y*z" 
   if  ((num_str[0] == '-') && (isalpha(str[*index])) ) 
   { 
      *coeff = -1; 
      return  true ; 
   } 
 
   // So we should now be on a number or a character ( variable name) 
   local_index = 1; 
   done = false ; 
   while  ( (*index < max_len) && (!done) ) 
   { 
      if  ( (!isdigit(str[*index])) && (str[*index] != '.'))  
      { 
         done = true ; 
      } 
      else 
      { 
         num_str[local_index] = str[*index]; 
         *index = *index + 1; 
         local_index++; 
      } 
   } 
 
   num_str[local_index] = '\0'; 
    
   *coeff = AsciiToCoeff(num_str);  // most likely *coeff = atof(num_str) 
 
   return  true ; 
} // end GetCoeff 
 
// ------------------------------------------------ --------------------------- 
// PostError 
// ------------------------------------------------ --------------------------- 
void  PostError( const  char  *type, const  char  *func_name, const  char  *message) 
{ 
   cout << type << " - " << func_name << endl; 
   cout << "     " << message << endl; 
   cout << endl; 
} 
 
// ------------------------------------------------ --------------------------- 
// ------------------------------------------------ --------------------------- 
// end Atom.cpp 
     
       
        

 
 


