
 
 
 
 

Calculating Determinants  
of Symbolic and Numeric Matrices 

 

A Starting Point 
 
 
 
 

Technical Report by 
Brent M. Dingle 

 
Texas A&M University 

May 2004, November 2005 
 
 
 
 
 
 
 
 
 
Abstract: 
There have been many papers published on how to calculate the determinant of a matrix 
with symbolic entries. Most of the methods used for numerical matrices will work for 
symbolic matrices, however they are slow. To assist the young computer scientist in 
discovering this, the more common definitional methods are presented here along with 
C++ source code. Thus this paper should serve as a place to start developing a system 
that could calculate determinants of symbolic matrices, while at the same time making 
the difficulties of performing such a task more obvious than just listening to a theoretical 
discussion of the more advanced techniques. In sum, this paper will present several 
methods of determinant calculation with details on their implementation. This is done 
with the intent to make it easier for the beginning student to become familiar with the 
problems surrounding this task. 
 
 
 
 



1   Introduction 
This paper will begin with three definitions of determinant. Each definition is equivalent 
to any other, however each offers a different perspective on determinant. The first 
definition is for abstract thought, the other two definitions lead to methods of calculating 
the determinant. The third section will present a brief discussion on solving systems of 
equations, which leads to the Gaussian elimination method for calculating the 
determinant. It is not until section 4 that we even mention symbolic determinants, and it 
is in this section the actual methods for calculating such will be described. The C++ 
source code for implementing the key components of each method will also be found in 
this section. In section 5 we offer a brief summary of speeds and scenarios for the usage 
of each method.  
 
 
2   Determinant Definition 
It should be understood that in terms of this paper the determinant is only defined for 
square matrices. If a matrix is not square then its determinant does not exist. With that in 
mind we begin with the geometric definition of determinant and progress to the classical 
algebraic definition of determinant. These definitions apply whether the matrix has 
numerical or symbolic entries. 
 
2.1   The Geometric Definition 
The most intuitive definition of determinant is the geometric definition. It is this 
definition that is often overlooked and rarely used for computation. We mention it here 
for completeness and in the hope that a visual picture may aid in the understanding and 
usage of the determinant. 
 
We will begin with a simple 1x1 matrix.  In this case the determinant of the matrix is the 
signed length of the line from the origin to the point on the number line marked by the 
entry of the matrix. So if the single entry of the matrix is positive, we consider the 
determinant to be the length of the line from the origin to the point going in the positive 
‘x’ direction. If the entry is negative then the determinant is the negative of the length of 
the line from the origin to the point going in the negative ‘x’ direction. 
 
In the case of a 2x2 matrix we look at the matrix as a set of two points in the Euclidean 
plane. Using these two points we make a parallelogram that includes the origin. The 
determinant is then the signed area of the parallelogram.  

For example if the matrix was:  then we would have a rectangle with corner 

points at (0, 0), (2, 0), (2, 1) and (0, 1).  And the determinant would be (positive) 2. 

2 0
0 1
⎡ ⎤
⎢
⎣ ⎦

⎥

 
For a 3x3 matrix the concept is much the same. We consider the matrix to be 3 points in 
3-dimensional Euclidean space. We create a parallelepiped that includes the three points 
and the origin. The determinant is then the signed volume of the parallelepiped. 
 



This concept extends to the higher dimensions of Euclidean space. So the determinant of 
an n x n matrix would be the ‘volume’ of the n-dimensional parallelepiped formed from 
the n points of the matrix. 
 
It should be clear that this geometric definition of determinant fails to offer an obvious 
method to calculate the determinant. However, it may be useful in thinking about it. 
 
 
2.2   The Classical Algebraic Definition 
For the classical definition of determinant we must first define permutation: Given a set 
Sn = { i , i = 0 to n-1 } a rearrangement of the elements of Sn is a permutation of Sn. For 
example, let S3 = { 0, 1, 2 }. Then 012, 021, 102, 120, 201, 210 are the six permutations 
of S3. Notice for any Sn there will always be n! possible permutations.  
 
Another important thing to notice in each permutation is the number of inversions. A pair 
of elements (pi, pj) is called an inversion in a permutation if i > j and pi < pj, or rather pi 
comes before pj. So in the above example let 012 be the original ordering. Then the 
following are true: 

012 has 0 inversions   021 has 1 inversion (the 21) 
102 has 1 inversion (the 10)  120 has 2 inversions (10 and 20) 
201 has 2 inversions (21 and 20) 210 has 3 inversions (21, 20 and 10) 

 
In a given permutation j0 j1 j2… jn-1 of Sn the permutation is called an odd permutation if 
the number of inversions is odd. The permutation is call an even permutation if the 
number of inversions is even. 
 
And finally we arrive at the definition of determinant. Let A be an n x n matrix. Such that  

A = [aij] =  

0,0 0,1 0, 1

1,0 1,1

1,0 1,1 1, 1

n

n n n n

a a a
a a

a a a

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L M

M M O M

L

 
The determinant of A is defined as 

 det(A) = |A| = 
0 1 2 10, 1, 2, 1,( )

nj j j n ja a a a
−−±∑ L   over all permutations of Sn

      
where j0 j1 j2… jn-1 is a permutation of Sn

    and (±) = + if j0 j1 j2… jn-1 is an even permutation 
    and (±) = – if j0 j1 j2… jn-1 is an odd permutation. 
 
Notice if we follow this definition there will be six terms in the summation for a 
determinant of a 3x3 matrix, there will be 24 terms in the summation for a 4x4 matrix, 
there will be…, there will be n! terms in the summation for an n x n matrix. 
 
 



2.3   The Recursive Definition using Minors and Cofactors 
This definition is also a method, often referred to as “expansion about the minors.” 
However, in Computer Science this method of derivation is also a recursive definition. 
This method requires a couple more definitions and an explicit statement of the 
determinant of a 2x2 matrix. We will begin with the definition of a minor: 
 
A minor of a given element in a matrix is the determinant that results from the matrix 
created by deleting the row and column of the given element. For example, consider the 
following. 
 

 A = 
0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 
The minor of a0,0 is obtained by deleting column 0 and row 0 and taking the determinant 
of the resulting matrix, thus  

the minor of a0,0 = determinant of 1,1 1,2

2,1 2,2

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

   

 
Likewise 

the minor of a0,1 = determinant of  1,0 1,2

2,0 2,2

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

   

 
And 

the minor of a0,2 = determinant of  1,0 1,1

2,0 2,1

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
For our purposes of calculating the determinant the above 3 minors would be sufficient, 
though you could also take the minors of a1,0 or a2,1 or any of the other elements in a 
similar fashion. Also notice for the purposes of determinant calculation if we had started 
with a 4x4 matrix we would have had 4 minors, each being a determinant of a 3x3 
matrix. Similarly a 5x5 matrix would have had 5 minors, each being a determinant of a 
4x4 matrix and so on. Thus an n x n matrix would have n minors, each being a 
determinant of an n-1 x n-1 matrix. 
 
With the definition of minor in place we now define a cofactor of a given element in a 
matrix to be the minor or negation of the minor of the given element, depending upon the 
element’s location in the matrix. If the row and column of the element add up to be an 
even number then the cofactor is the minor, otherwise the cofactor is the negation of the 
minor. Thus in the example above, the cofactor of a0,0 would be the minor of a0,0. But the 
cofactor of a0,1 would be the negation of the minor of a0,1. 
 



We will now define the determinant of a 2x2 matrix to be as follows: 

Let A =   then |A| = a0,0 0,1

1,0 1,1

a a
a a
⎡ ⎤
⎢
⎣ ⎦

⎥ 0,0*a1,1 – a0,1*a1,0. 

 
With this definition we may now define the determinant of any n x n matrix. Let A be an 
n x n matrix then the determinant of A is defined as: 
 

 det(A) =  
1

0, 0,
0

( )
n

j j
j

a cofactor a
−

=
∑ �

 
This definition will recurse down until the definition of the determinant of a 2x2 matrix 
can be applied. While this would seem easy to implement it has problems, most of which 
are shared among all recursive solutions. 
 
 
3   Solving Systems of Equations 
In this section we move to a related topic of solving systems of equations. This is often 
done using matrix representations and operations. In fact it is common to see a system of 
n equations and n unknowns written in the form of Ax = b. Where A is an n x n matrix 
and x and b are n x 1 vectors, where x is usually a vector of variable names and b is 
usually a vector of numeric values. Thus assuming there is a solution x we could find it 
by saying x = A-1b. It is here that determinants come into play. If the determinant of A is 
not zero, then A-1 exists and there is a solution. From this it would be obvious that if we 
have a method to find the solution of Ax = b then we might have a way to find the 
determinant of A as well. This is indeed the case. 
 
A common way to solve the system Ax = b is to use matrix operations to transform A into 
an upper (or lower) triangular matrix and then back solve. This is also referred to as 
Gaussian elimination. The beauty of this method is that it also allows for the easy 
calculation of the determinant as it has been proven the determinant of an upper (or 
lower) triangular matrix is just the product of the diagonal elements, which by the 
recursive definition of determinant should be obvious. 
 
It should be noted here that for every row or column swap required to achieve the upper 
triangular form, the determinant will be off by a multiply of negative one. More 
specifically if in transforming A into an upper triangular matrix there were an odd number 
of row and column swaps then the determinant is the negation of the product of the 
diagonal elements. If there were an even number of row and column swaps then the 
determinant is exactly the product of the diagonal elements. 
 
 
 
 
 
 



4   Methods of Finding the Determinant 
4.1   Applying the Classical Method 
One of the most straightforward ways to find the determinant is the direct application of 
the classical algebraic definition as stated in section 2.2. Using this method all that needs 
to be done is to calculate the product of every possible permutation and then sum them. 
 
The algorithm would go something like: 
CalcDetClassic(input Matrix, output Determinant) 
{ 
   Check for invalid conditions (not square etc) 
   If number of rows = 1 then return only element, e[0][0] 
   If number of rows = 2 then return e[0][0]*e[1][1] – e[0][1]*e[1][0] 
 
   Initialize a permutation vector 
   Initialize return value to zero 
   While not used all permutations 
   { 
      Calculate the product of the current permutation 
 If the current permutation is even 

      Add the product to the return value 
Else 
      Subtract the product from the return value 

       
Get the next permutation 

   } 
} 
 
Notice this algorithm will work regardless of whether the matrix is composed of numbers 
or symbolic polynomials. For it to function with polynomials the data structure 
representing them would need to support addition, subtraction and multiplication. 
 
The obvious problem with this method is the time requirement. There will be n! terms 
that must be added together. That means there are at least n! multiplies and additions and 
it is quite likely more multiplies than that. This is bad if you are dealing with just 
numbers but terrible if you are working with polynomials. Consider if you must multiply 
(x + 3) * (y – 4). While this is “one” multiply it actually requires four multiplies and an 
addition. 
 
The C++ source code for this can be found in Appendix A. 
 
 
 
 
 
 
 
 
 
 



4.2   A Recursive Method 
This method is perhaps the easiest to implement. However for it to be useful some care 
must be taken in memory allocation and depth of recursion. The algorithm would be: 
 
CalcDetRecurse(input Matrix, output Determinant) 
{ 
   Check for invalid conditions (not square etc) 
   If number of rows = 1 then return only element, e[0][0] 
   If number of rows = 2 then return e[0][0]*e[1][1] – e[0][1]*e[1][0] 
 
   Ret_val = 0 
   For j = 0 to (number of columns – 1) 
   { 
      SubMatrix = Matrix with row 0 and column j removed 
      Cofactor = CalcDetRecurse(SubMatrix, Cofactor) 
      If j is odd  
         Then Cofactor = -1 * Cofactor 
      Ret_val = Ret_val + e[0][j] * Cofactor 
   } 
   Return Ret_val 
} 
 
This method will also work for numerical or symbolic matrices. However it too will have 
a large number of multiplies, and in the case of polynomials that is not such a good thing. 
In particular notice that in the for-loop there will be n multiplies and n additions and there 
will be n recursive calls where each call will have n-1 multiplies and n-1 additions which 
in turn will have another n-1 recursive calls that each make n-2 multiplies and n-2 
additions and so on until n – i, is two. 
 
So in the case of n = 3 there would be three multiplies and three additions in the initial 
call and three recursive calls each having two multiplies and one subtraction so the total 
cost would be 3 + 3 * 2 = 9 multiplies and 3 + 3*1 = 6 additions. In the case of n = 4 
there would be four multiplies and four additions with four recursive calls each having 
nine multiples and six additions, so the total cost would be 4 + 4 * 9 = 40 multiplies and  
4 + 4 * 6 = 30 additions. In the case of n = 5 there would be five multiplies and five 
additions with five recursive calls each having 40 multiplies and 30 additions, for a total 
cost of 5 + 5 * 40 = 205 multiplies and 5 + 5 * 30 = 155 additions. For the case of n = 6, 
there would be six multiples and six additions with six recursive calls each having 205 
multiplies and 155 additions, the total cost would end up being 6 + 6 * 205 = 1236 
multiplies and 6 + 6 * 155 = 936 additions. Notice this is actually worse than n! 
multiplies and n! additions. 
 
Fortunately there is a way to improve this which will be discussed in Section 4.4. The 
C++ source code for this, which implements the improvement in section 4.4, can be 
found in Appendix B. 
 
 
 
 



4.3   Gaussian Method using an Upper Triangular Form 
For this method we simply transform the original matrix into an upper triangular matrix. 
As we transform the matrix we keep track of how many row and column swaps we 
perform. We then calculate the determinant by taking the product of the diagonal 
elements. If the number of row and column swaps was odd we multiply the result by 
negative one. If the number was even we do nothing else. The key component of this 
method is the function which converts the original matrix into an upper triangular one. 
This can be done using the following algorithm: 
 
MakeUpper(input/output Matrix, output Number of row/column swaps) 
{ 
   If number of rows = 1 then return 
 
   swap_count = 0 
   For i = 1 to (number of rows – 1) 
   { 
      For k = 0 to (i – 1) 
      { 
         factor = e[i][k] / e[k][k] 
         For j = (k + 1) to (number of columns – 1) 
         { 
            e[i][j] = e[i][j] – (factor * e[k][j]) 
         } 
      } 
      // might have set diagonal element to zero, requiring a pivot 
      if e[i][i] == 0 
      then swap column i for some column j where e[i][j] != 0 
           and increase swap_count by 1 
   } 
   if swap_count is odd return –1 else return 1 
   // notice the lower triangle of elements is not explicitly zeroed 
   // that could be added in 
} 
 
This method, like the previous ones, will work for any type of matrix. This method 
requires approximately O(n3) multiplications, divisions and additions. It is probably the 
most often implemented method of calculating determinants as it is the method most 
people are taught in linear algebra classes. Notice for comparison to the previous methods 
for n =3, 33 = 27,  for n = 4, 43 = 64,  for n = 5, 53 = 125, for n = 6, 63 = 216, and so on. 
When working with polynomials the division portion of this algorithm is often the most 
costly, it would be nice if the number of divisions could be significantly reduced, or at 
least guaranteed to ‘come out evenly’ every time. Which is one of the motivations for the 
algorithm in the next section. 
 
The C++ source code for this can be found in Appendix C. 
 
 
 
 
 
 



4.4   Improved Recursive Method 
This method uses both recursion and an elimination trick to assist in the calculation of the 
determinant. This method is based on one proposed in [Bare1968] it is sometimes 
referred to as a fraction free determinant calculation. The concept is to create an upper 
triangular matrix but to also keep track of the determinant as we go. The algorithm goes 
something as follows: 
 
CalcDetRecurse(input Matrix, output Determinant) 
{ 
   Check for invalid conditions (not square etc) 
   If number of rows = 1 then return only element, e[0][0] 
   If number of rows = 2 then return e[0][0]*e[1][1] – e[0][1]*e[1][0] 
 
   // Construct SubMatrix (with 1 less row and column than this Matrix) 
   For i = 1 to (number of rows – 1) 
   { 
      For j = 1 to (number of rows – 1) 
      { 
         subtract_me = e[i][0] * e[0][j] 
         e[i][j] = e[i][j] * e[0][0] – subtract_me 
      } 
   } // Submatrix is e[1][1] to e[n-1][n-1] inclusive 
 
   Ret_val = CalcDetRecurse(SubMatrix, Determinant) 
   For i = 1 to num_rows – 2 
   { 
      Determinant = Determinant / e[0][0] 
   } 
} 
 
Notice this algorithm appears to run with about O(n2) multiplications and additions, 
however it is n2 + (n-1)2 + …  = (n-1)(2n2 + 5n + 6) / 6 = O(n3). Which is still the best so 
far. It will also work with any type of matrix. However it is slightly complicated. To 
understand this method it is best to work through an example. We will begin with a 
numerical 4x4 matrix and show each submatrix created. 
 

1 2 3 4
5 3 7 1
3 2 2 5

13 11 3 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

            
7 8 19
4 7 7
15 36 46

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
− − −⎢ ⎥⎣ ⎦

17 27
132 37

−⎡ ⎤
⎢ ⎥
⎣ ⎦

    4193 

 
And then as the recursion unwinds: 4193 / -7 = -599      -599 / 1 = -599, -599 / 1 = -599 
 
Now to fully realize why the method works it might be a good idea to look at a symbolic 
matrix and notice how things cancel and why they cancel. To demonstrate this we will 
offer a 4x4 matrix and reduce it to an upper triangular matrix. The notation will be as 
follows: the subscripts will remain the same and the superscripts will denote the iteration, 
the lack of a superscript means iteration 1. 
 



So let us begin with the following matrix: 

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

a a a a
b b b b
c c c c
d d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     

0 1 2 3

0 0
1 1 2 2 3 3

0 0

0 0
1 1 2 2 3 3

0 0

0 0
1 1 2 2 3 3

0 0

0

0

0

a a a a
b bb a b a b a
a a
c cc a c a c a
a a
d dd a d a d a
a a

0

0

0

0

0

0

b
a
c
a
d
a

⎡ ⎤
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

 

Let   = 2
1b 0

1 1
0

bb a
a

−   =  ( a0b1 – a1b0  ) / a0    

2
2b  = 0

2 2
0

bb a
a

−  = ( a0b2 – a2b0  ) / a0    

and so on.   
 
Notice it is the latter form that is being used in this section’s algorithm. 
Continuing on: 

0 1 2 3
2 2 2
1 2 3
2 2 2
1 2 3
2 2 2
1 2 3

0
0
0

a a a a
b b b
c c c
d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

      

0 1 2 3
2 2 2
1 2 3

2 2
2 2 2 21 1
2 2 3 32 2

1 1
2 2

2 2 2 21 1
2 2 3 22 2

1 1

0

0 0

0 0

a a a a
b b b

c cc b c b
b b

d dd b d b
b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Again performing a renaming and another iteration we arrive at: 

0 1 2 3
2 2 2
1 2 3

3 3
2 3
3 3
2 3

0
0 0
0 0

a a a a
b b b

c c
d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

      

0 1 2 3
2 2 2
1 2 3

3 3
2 3

3
3 3 2
3 3 3

2

0
0 0

0 0 0

a a a a
b b b

c c
dd c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 

 
The straightforward Triangular (Gaussian) method would then calculate the determinant 

by multiplying: a0 b1
2 c2

3 
3

3 3 2
3 3 3

2

dd c
c

⎛ ⎞
−⎜

⎝ ⎠
⎟ . However, the recursive method described in this 

section notices that there is automatically a large amount of cancellation. Specifically it 

can be shown,  c2
3 

3
3 3 2
3 3 3

2

dd c
c

⎛
−⎜

⎝ ⎠

⎞
⎟  can be evenly divided by b1

2 exactly 3-2 = 1 time and 

the quotient of that division can in turn be evenly divided by a0 exactly 4-2 = 2 times. 
 



4.5   Method using an Interpolation Trick (univariate) 
This particular method has a variety of implementations and clever performance 
enhancements. For this paper we will limit things to be as basic as possible. This method 
is specifically designed for a matrix that has entries which are univariate polynomials. In 
fact there can only be one variable, though it can be found in multiple entries in the 
matrix. The motivation for this method is that numeric computations can be performed 
much faster than symbolic computations – they have the advantage of hardware and 
compiler optimization techniques. So if we put a number in for the variable we will have 
a strictly numeric matrix for which we can quickly find the determinant.  
 
To begin the reasoning of this method, notice that the determinant if solved symbolically 
would be a univariate polynomial equation. If we can predetermine the degree of this 
equation to be d we can use d+1 values for the variable and calculate the determinant d+1 
times. This would give us d+1 points to use to interpolate what the univariate polynomial 
equation would be. This of course assumes we have a fast way to calculate numeric 
determinants and a fast interpolation method, both of which can readily be found, for 
example in [Pres2002]. 
 
4.5.1   Determining the Degree of the Determinant 
So the actual problem to solve is finding d, the degree of the resulting determinant. A 
method to do this is presented in [Henr1999] which in turn was based on a method 
proposed in [Door1979]. While the method described in those papers is effective we will 
present a simpler method, which may or may not be as efficient. It is based on the 
improved recursive method described above. The idea is as follows: 
 
Given a symbolic n x n matrix, create a new n x n matrix where each entry e[i][j] is the 
highest degree of the variable appearing in the ith row and jth column of the original 
matrix. Follow the general steps of the Improved Recursive Algorithm of section 4.4, 
however all we need to do is keep track of the degree of the variable that would result 
from the various multiplications. Notice it is possible that this highest degree may get 
cancelled in a subtraction, however we will assume this does not happen, and thus will 
arrive at a maximum bound on the degree. Further note that the divisions could give us a 
minimum bound on the degree, as all the divisions must come out even. It should be 
obvious this calculation will take no more time than required to calculate one numerical 
determinant. 
 
The actual algorithm would go something as follows, we assume the input matrix is the 
matrix of maximum degrees: 
 
CalcDegreeOfDet(input Matrix, output MaxDeg) 
{ 
   Check for invalid conditions (not square etc) 
   If number of rows = 1  
      then return only element, e[0][0] 
 
   If number of rows = 2  
      then return Max(e[0][0]+e[1][1], e[0][1]+e[1][0]) 
 



   // Construct SubMatrix (with 1 less row and column than this Matrix) 
   For i = 1 to (number of rows – 1) 
   { 
      For j = 1 to (number of rows – 1) 
      { 
         subtract_me = e[i][0] + e[0][j] 
         e[i][j] = Max( e[i][j] + e[0][0], subtract_me) 
      } 
   }  // Submatrix is now e[1][1] to e[n-1][n-1] inclusive 
   MaxDeg = CalcDetRecurse(SubMatrix, MaxDeg) 
    
   For i = 1 to num_rows – 2 
   { 
      MaxDeg = MaxDeg - e[0][0] 
   } 
    
   Return MaxDeg 
} 
 
 
4.5.2   Examples of Degree Calculation 
To illustrate the above algorithm consider the following: 
 

Let A = 

2

3

2 2 4

5
7

x x
x x
x x x

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ , then the matrix of maximum degrees is 

1 2 0
3 0 1
2 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Applying the algorithms we get the following: 
 

1 2 0
3 0 1
2 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

            
max(0 1,2 3) max(1 1,3 0)
max(2 1,2 0) max(4 1,2 1)

+ + + +⎡ ⎤
⎢ + + + +⎣ ⎦

⎥
5 3
3 5
⎡ ⎤
⎢ ⎥
⎣ ⎦

    max(10, 6) = 10 

 
Unwinding the recursion we subtract 1 from 10 exactly 3-2 = 1 time, for a result of d = 9. 
This is correct as the determinant is –x9 + 13x5 – x4 – 35x2. 
 
Another example is as follows. 

Let A = 

3 2

2 3

2 2 4

2

5
7

1
3 5 9 2

x x x
x x x

x x x
x x

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

, then the matrix of maximum degrees is 

3 2 0 1
2 3 0 1
0 2 2 4
1 0 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 



3 2 0 1
2 3 0 1
0 2 2 4
1 0 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

        
6 3 4
5 5 7
3 5 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 13
11 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

    24 

 
Unwinding we see that 24 – 6 = 18, and then 18 – 3 – 3 = 12. So the degree of the 
determinant should be no more than 12. And in fact the degree is exactly 12 as the 
determinant is –9x12 + 9x10 + 26x8 + 2x7 – 20x6 – 18x5 + 16x4 – 10x3 + 14x2 – 10x.  
 
 
4.5.3   Calculating the Interpolation Points 
Once we have determined the degree of the determinant to be d we will need to calculate 
the determinant at d + 1 unique values. To illustrate this consider the first example in 

section 4.5.2 where A = 

2

3

2 2 4

5
7

x x
x x
x x x

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ . We found the degree of this determinant to be 9, 

so we need to evaluate the determinant for 9+1 = 10 unique values of x. For notation 
purposes let | A(vi) | denote the determinant of A when a value of vi is placed in for x. 
Let vi = i for i = -4 to 5, thus giving us 10 values = { -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 }. 
Using whatever fast numerical determinant method we like, we find that 

| A(v-4) | = 248016 
| A(v-3) |  = 16128 
| A(v-2) |  = -60 
| A(v-1) |  = -48 
| A(v0) |  = 0  
| A(v1) |  = -24 
| A(v2) |  = -252 
| A(v3) |  = -16920 
| A(v4) |  = -249648 
| A(v5) |  = -1914000 

 
We then use whatever fast numerical interpolation routine we like to find the polynomial 
that goes through the points: 
 

(-4, 248016),  (1, -24) 
(-3, 16128),  (2, -252) 
(-2, -60),  (3, -16920) 
(-1, -48),  (4, -249648) 
(0, 0),   (5, -1914000) 

 
And arrive at the answer of: –x9 + 13x5 – x4 – 35x2. 
 
 
 



5   Summary 
From the above the reader should now have a basic understanding of what is required to 
calculate determinants. It should be apparent that the obvious (definitional) methods, 
while useful in solving small matrices may not be the optimal solution for larger 
problems. With run times in the order of O(n!) and O(n3) things will take a while to run, 
even when using just numeric matrices. When polynomial entries are allowed run times 
become even worse in implementation [Gent1973]. 
 
For applications dealing with symbolic matrices, from our experience, currently, the 
classical method can solve problems up to n = 9, within several minutes. The Gaussian 
based method can solve problems up to size about n = 6. The improved recursive method 
can likewise solve such problems up to a size of about n = 12. All of them are capable of 
solving larger problems, within restrictions of maximum values held within data types, 
however the time required quickly becomes unreasonable. The interpolation method can 
solve larger problems but its effectiveness depends greatly on the degree of the 
determinant polynomial. 
 
One thing to learn from these methods would be that the hybridization of the methods is 
likely to improve the effective runtimes. Specifically if a small amount of analysis is 
done prior to selecting a method to calculate the determinant, it might make things 
extremely easy. Likewise one method might be used to begin the determinant calculation 
and another used to finish the smaller, submatrix problems. If automated techniques 
could be developed to perform such tasks then runtimes might improve. With this 
statement it should be understood that there currently are many specialized techniques for 
a great many problems, an integration or a useful generalization of these techniques 
should be done in the future. It is hoped that this paper might prove to be helpful for such 
an endeavor. 
 
In the Appendices of this paper you will find source code implementing most of the 
algorithms described in this paper. The source code is based on polynomial classes as 
described in “Designing a Multivariate Polynomial Class” by Brent M. Dingle, April 
2004. 
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Appendix A – Source Code for Classical Method 
long CPolymat::CalcDetClassic(CPolyfrac &answer_polyf) 
{ 
   CPolyfrac tmp_polyf; 
   std::vector<int> v;   // contains indices of permutations 
   bool even, more; 
   int i; 
   long num_terms, cur_term; 
   long ret_val; 
 
   // default to failure 
   ret_val = -1; 
   answer_polyf.SetInteger(0); 
 
   if (m_NumRows != m_NumCols) { return ret_val; } // nonsquare = det undefined 
   if (m_NumRows <= 0) { return ret_val; }         // no matrix entries 
 
   if (m_NumRows == 1)       // Do case 1 by 1 
   { 
      answer_polyf = m_Mat[0][0]; 
      ret_val = 1; 
   } 
    
   else if (m_NumRows == 2)   // Do case 2 by 2 
   { 
      answer_polyf = m_Mat[0][0] * m_Mat[1][1]; 
      tmp_polyf = m_Mat[0][1] * m_Mat[1][0]; 
      answer_polyf -= tmp_polyf; 
      ret_val = 1; 
   } 
 
   else 
   { 
      v.push_back(0);  // initialize permutation index vector v[] 
      num_terms = 1; 
      for (i=1; i < m_NumRows; i++) 
      { 
         v.push_back(i); 
         num_terms *= i;     // num_terms = (n-1)! = (n-1)*(n-2)*...*2*1 
      } 
 
      num_terms *= m_NumRows; 
 
      if (num_terms <= 0) 
      { 
         PostError(); 
         ret_val = -1; 
         return ret_val; 
      } 
 
      // answer_polyf init'd to zero above 
      even = true; 
      more = false; 
      for (cur_term=0; cur_term < num_terms; cur_term++) 
      { 
         NextPermute(v, m_NumRows, &more, &even); 
 
         tmp_polyf = m_Mat[0][ v[0] ] * m_Mat[1][ v[1] ]; 
         for (i=2; i < m_NumRows; i++) 
         { 
            tmp_polyf *= m_Mat[i][ v[i] ]; 
         } // end for i 
 
         if (even) 
         { 
            answer_polyf += tmp_polyf; 
         } 
         else 
         { 
            answer_polyf -= tmp_polyf; 



         } 
      } // end for cur_term 
 
      ret_val = 1; 
   } // end case 3 by 3 or greater 
 
   return ret_val; 
} // end CalcDetClassic 

 
Notice that the function NextPermute() computes all the permutations of N integers, one at a time. When the function is 
first called more should be set to false, so the function will return the ‘original’ permutation. The parameters should be 
obvious in meaning, the n is the number of objects being permuted, v[] is the permutation, more is a flag variable and 
even will be set to true or false depending on if the returned permutation is even or odd. It is assumed that if the initial 
permutation is 0, 1, 2, 3 then the second will be 0, 1, 3, 2 and the third will be 0, 2, 1, 3 and so on. Effectively all the 
permutations starting with 0 are done first, then all those starting with 1, then all those starting with 2, and so on. The 
source code would look something like: 
 
void CPolymat::NextPermute(std::vector<int> &v, long n, bool *more, bool *even) 
{ 
   int first, i, i2; 
   long less_than_cnt; 
 
   if ( ! (*more) )   // assume first call, order of v is not set 
   { 
      // Start with the first permutation (ascending order). 
      std::sort(v.begin(), v.end()); 
      *more = true; 
      *even = true;   // 1,2,3,4,... is always even (positive sign) 
      return; 
   } 
   else  // v has been ordered at least once before, continue on 
   { 
      std::next_permutation(v.begin(), v.end());  // this alters v 
      // *more stays true 
       
      // *even needs to be determined 
      first = v[0]; 
 
      if ( (first % 2) == 1) { *even = false; } 
      else { *even = true; } 
 
      for (i = 1; i < n; i++) 
      { 
         less_than_cnt = 0; 
         for (i2 = 0; i2 < i; i2++) 
         { 
            if (v[i2] < v[i]) { less_than_cnt++; } 
         } 
 
         less_than_cnt = less_than_cnt % 2; 
 
         if (less_than_cnt == 0) // zero or even number of sign changes 
         { 
            if ( (v[i] % 2) == 1 ) { *even = !(*even); } 
            // else even and anything = anything 
         } 
         else if (less_than_cnt == 1) // odd number of sign changes 
         { 
            if ( (v[i] % 2) == 0 ) { *even = !(*even); } 
            // else even and anything = anything 
         } 
         else   // this should never happen 
         { 
            PostError(); 
         } 
      } // end for i 
   } // end if *more was true 
 
} // end NextPermute 



 
Appendix B – Source Code for Recursive Method 
 
long CPolymat::CalcDetRecurse(long start_index) 
{ 
   long ret_val; 
   long size, i, j; 
 
   m_tmpPolyf.SetInteger(0); 
   size = m_NumRows - start_index; 
 
   ret_val = -1;   // default to failure 
    
   if (start_index == 0) 
   { 
      m_RecurseDet.SetInteger(0); 
   } 
 
   // TODO: Should check that m_Mat[start_index][start_index] is NOT zero 
 
   if (size < 1)       // shouldn't happen 
   { 
      m_RecurseDet = m_Mat[0][0]; 
   } 
   else if (size == 1) 
   { 
      m_RecurseDet = m_Mat[m_NumRows-1][m_NumCols-1]; 
      ret_val = 1; 
   } 
   else 
   { 
      // Set up the submatrix – notice we alter m_Mat, destroying it BUT save memory 
      for (i=start_index+1; i < m_NumRows; i++) 
      { 
         for (j=start_index+1; j < m_NumRows; j++) 
         { 
            m_tmpPolyf = m_Mat[i][start_index] * m_Mat[start_index][j]; 
            m_Mat[i][j] *= m_Mat[start_index][start_index]; 
            m_Mat[i][j] -= m_tmpPolyf; 
         } // end for j 
      } // end for i 
 
      ret_val = CalcDetRecurse(start_index + 1); 
      // m_tmpPolyf = result of the above call 
 
      if (ret_val == 1)  // success 
      { 
         for (i=0; i < size - 2; i++) 
         { 
            m_RecurseDet /= m_Mat[start_index][start_index]; 
         } 
      } 
   } 
 
   return ret_val; 
} // end DetRecurse 

 
 
 
 
 
 
 
 



Appendix C – Source Code for Gaussian Method 
 
long CPolymat::MakeUpper() 
{ 
   CPolyfrac tmp_frac; 
   long mat_size, last_row; 
   long i, j, k; 
   long num_swaps; 
   bool zero_on_diag, swapped; 
   long ret_val; 
 
   ret_val = 1;   // default to success 
   num_swaps = 0; 
   zero_on_diag = false; 
 
   // For this to work for determinant calcs rows must = cols 
   // this algorithm was based on that assumption (it might still work) 
   if (m_NumRows != m_NumCols) 
   { 
      return 0; 
   } 
    
   mat_size = m_NumRows; 
   last_row = mat_size; 
 
   // Init tmp to all zeros - is done by the CPolyFrac constructor 
   num_swaps = SetFirstRowForElim();  // guarantees m_Mat[0][0] is NOT zero 
                                      // returns < 0 if NOT possible to do so 
   if (num_swaps < 0)   // unable to setup row[0] 
   { 
      return 0; 
   } 
 
   // row 0 stays unaltered 
   for (i=1; i < last_row; i++)   // last_row = mat_size unless get an all zero row   
   { 
      for (k=0; k < i; k++) 
      { 
         tmp_frac = m_Mat[i][k] / m_Mat[k][k]; 
 
         for (j = k+1; j < mat_size; j++) 
         { 
            m_Mat[i][j] = m_Mat[i][j] - (tmp_frac * m_Mat[k][j]); 
 
         } 
      } 
 
      // It is now possible we set a diagonal element to zero 
      // so we shall do column swaps to fix this 
      // If this fails then row i is all zeros, so 
      // there would be a zero on the diagonal somewhere anyway, 
      // and we will leave it here. 
      if (m_Mat[i][i].IsZero()) 
      { 
         j = i+1;  // all cols left of col[i] will have zeros in row[i] 
         swapped = false; 
         while ((!swapped) && (j < mat_size)) 
         { 
            if ( !m_Mat[i][j].IsZero() ) 
            { 
               SwapCols(i, j); 
               swapped = true; 
               num_swaps++; 
            } 
            j++; 
         } 
 
         if (!swapped) 
         { 



            zero_on_diag = true; 
            // could just return zero here 
            // instead swap this row with current "last" row 
            // and decrement number of rows to look at 
            // (as the last ones will be all zero) 
            SwapRows(i, last_row - 1); 
            last_row--; 
         } 
 
      } // end if [i][i] is zero 
   } // end for i 
 
   if (num_swaps % 2 == 0) 
   { 
      ret_val = 1; 
   } 
   else 
   { 
      ret_val = -1; 
   } 
 
   if (zero_on_diag)     
   {  
      // determinant must be zero, and we moved zero rows to bottom of mat 
      ret_val = 0; 
   } 
 
   return ret_val; 
} // end MakeUpper 
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