

Calculating Determinants
of Symbolic and Numeric Matrices

A Starting Point

Technical Report by
Brent M. Dingle

Texas A&M University

May 2004, November 2005

Abstract:
There have been many papers published on how to calculate the determinant of a matrix
with symbolic entries. Most of the methods used for numerical matrices will work for
symbolic matrices, however they are slow. To assist the young computer scientist in
discovering this, the more common definitional methods are presented here along with
C++ source code. Thus this paper should serve as a place to start developing a system
that could calculate determinants of symbolic matrices, while at the same time making
the difficulties of performing such a task more obvious than just listening to a theoretical
discussion of the more advanced techniques. In sum, this paper will present several
methods of determinant calculation with details on their implementation. This is done
with the intent to make it easier for the beginning student to become familiar with the
problems surrounding this task.

1 Introduction
This paper will begin with three definitions of determinant. Each definition is equivalent
to any other, however each offers a different perspective on determinant. The first
definition is for abstract thought, the other two definitions lead to methods of calculating
the determinant. The third section will present a brief discussion on solving systems of
equations, which leads to the Gaussian elimination method for calculating the
determinant. It is not until section 4 that we even mention symbolic determinants, and it
is in this section the actual methods for calculating such will be described. The C++
source code for implementing the key components of each method will also be found in
this section. In section 5 we offer a brief summary of speeds and scenarios for the usage
of each method.

2 Determinant Definition
It should be understood that in terms of this paper the determinant is only defined for
square matrices. If a matrix is not square then its determinant does not exist. With that in
mind we begin with the geometric definition of determinant and progress to the classical
algebraic definition of determinant. These definitions apply whether the matrix has
numerical or symbolic entries.

2.1 The Geometric Definition
The most intuitive definition of determinant is the geometric definition. It is this
definition that is often overlooked and rarely used for computation. We mention it here
for completeness and in the hope that a visual picture may aid in the understanding and
usage of the determinant.

We will begin with a simple 1x1 matrix. In this case the determinant of the matrix is the
signed length of the line from the origin to the point on the number line marked by the
entry of the matrix. So if the single entry of the matrix is positive, we consider the
determinant to be the length of the line from the origin to the point going in the positive
‘x’ direction. If the entry is negative then the determinant is the negative of the length of
the line from the origin to the point going in the negative ‘x’ direction.

In the case of a 2x2 matrix we look at the matrix as a set of two points in the Euclidean
plane. Using these two points we make a parallelogram that includes the origin. The
determinant is then the signed area of the parallelogram.

For example if the matrix was: then we would have a rectangle with corner

points at (0, 0), (2, 0), (2, 1) and (0, 1). And the determinant would be (positive) 2.

2 0
0 1
⎡ ⎤
⎢
⎣ ⎦

⎥

For a 3x3 matrix the concept is much the same. We consider the matrix to be 3 points in
3-dimensional Euclidean space. We create a parallelepiped that includes the three points
and the origin. The determinant is then the signed volume of the parallelepiped.

This concept extends to the higher dimensions of Euclidean space. So the determinant of
an n x n matrix would be the ‘volume’ of the n-dimensional parallelepiped formed from
the n points of the matrix.

It should be clear that this geometric definition of determinant fails to offer an obvious
method to calculate the determinant. However, it may be useful in thinking about it.

2.2 The Classical Algebraic Definition
For the classical definition of determinant we must first define permutation: Given a set
Sn = { i , i = 0 to n-1 } a rearrangement of the elements of Sn is a permutation of Sn. For
example, let S3 = { 0, 1, 2 }. Then 012, 021, 102, 120, 201, 210 are the six permutations
of S3. Notice for any Sn there will always be n! possible permutations.

Another important thing to notice in each permutation is the number of inversions. A pair
of elements (pi, pj) is called an inversion in a permutation if i > j and pi < pj, or rather pi
comes before pj. So in the above example let 012 be the original ordering. Then the
following are true:

012 has 0 inversions 021 has 1 inversion (the 21)
102 has 1 inversion (the 10) 120 has 2 inversions (10 and 20)
201 has 2 inversions (21 and 20) 210 has 3 inversions (21, 20 and 10)

In a given permutation j0 j1 j2… jn-1 of Sn the permutation is called an odd permutation if
the number of inversions is odd. The permutation is call an even permutation if the
number of inversions is even.

And finally we arrive at the definition of determinant. Let A be an n x n matrix. Such that

A = [aij] =

0,0 0,1 0, 1

1,0 1,1

1,0 1,1 1, 1

n

n n n n

a a a
a a

a a a

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L M

M M O M

L

The determinant of A is defined as

 det(A) = |A| =
0 1 2 10, 1, 2, 1,()

nj j j n ja a a a
−−±∑ L over all permutations of Sn

where j0 j1 j2… jn-1 is a permutation of Sn

 and (±) = + if j0 j1 j2… jn-1 is an even permutation
 and (±) = – if j0 j1 j2… jn-1 is an odd permutation.

Notice if we follow this definition there will be six terms in the summation for a
determinant of a 3x3 matrix, there will be 24 terms in the summation for a 4x4 matrix,
there will be…, there will be n! terms in the summation for an n x n matrix.

2.3 The Recursive Definition using Minors and Cofactors
This definition is also a method, often referred to as “expansion about the minors.”
However, in Computer Science this method of derivation is also a recursive definition.
This method requires a couple more definitions and an explicit statement of the
determinant of a 2x2 matrix. We will begin with the definition of a minor:

A minor of a given element in a matrix is the determinant that results from the matrix
created by deleting the row and column of the given element. For example, consider the
following.

 A =
0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The minor of a0,0 is obtained by deleting column 0 and row 0 and taking the determinant
of the resulting matrix, thus

the minor of a0,0 = determinant of 1,1 1,2

2,1 2,2

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

Likewise

the minor of a0,1 = determinant of 1,0 1,2

2,0 2,2

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

And

the minor of a0,2 = determinant of 1,0 1,1

2,0 2,1

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

For our purposes of calculating the determinant the above 3 minors would be sufficient,
though you could also take the minors of a1,0 or a2,1 or any of the other elements in a
similar fashion. Also notice for the purposes of determinant calculation if we had started
with a 4x4 matrix we would have had 4 minors, each being a determinant of a 3x3
matrix. Similarly a 5x5 matrix would have had 5 minors, each being a determinant of a
4x4 matrix and so on. Thus an n x n matrix would have n minors, each being a
determinant of an n-1 x n-1 matrix.

With the definition of minor in place we now define a cofactor of a given element in a
matrix to be the minor or negation of the minor of the given element, depending upon the
element’s location in the matrix. If the row and column of the element add up to be an
even number then the cofactor is the minor, otherwise the cofactor is the negation of the
minor. Thus in the example above, the cofactor of a0,0 would be the minor of a0,0. But the
cofactor of a0,1 would be the negation of the minor of a0,1.

We will now define the determinant of a 2x2 matrix to be as follows:

Let A = then |A| = a0,0 0,1

1,0 1,1

a a
a a
⎡ ⎤
⎢
⎣ ⎦

⎥ 0,0*a1,1 – a0,1*a1,0.

With this definition we may now define the determinant of any n x n matrix. Let A be an
n x n matrix then the determinant of A is defined as:

 det(A) =
1

0, 0,
0

()
n

j j
j

a cofactor a
−

=
∑ �

This definition will recurse down until the definition of the determinant of a 2x2 matrix
can be applied. While this would seem easy to implement it has problems, most of which
are shared among all recursive solutions.

3 Solving Systems of Equations
In this section we move to a related topic of solving systems of equations. This is often
done using matrix representations and operations. In fact it is common to see a system of
n equations and n unknowns written in the form of Ax = b. Where A is an n x n matrix
and x and b are n x 1 vectors, where x is usually a vector of variable names and b is
usually a vector of numeric values. Thus assuming there is a solution x we could find it
by saying x = A-1b. It is here that determinants come into play. If the determinant of A is
not zero, then A-1 exists and there is a solution. From this it would be obvious that if we
have a method to find the solution of Ax = b then we might have a way to find the
determinant of A as well. This is indeed the case.

A common way to solve the system Ax = b is to use matrix operations to transform A into
an upper (or lower) triangular matrix and then back solve. This is also referred to as
Gaussian elimination. The beauty of this method is that it also allows for the easy
calculation of the determinant as it has been proven the determinant of an upper (or
lower) triangular matrix is just the product of the diagonal elements, which by the
recursive definition of determinant should be obvious.

It should be noted here that for every row or column swap required to achieve the upper
triangular form, the determinant will be off by a multiply of negative one. More
specifically if in transforming A into an upper triangular matrix there were an odd number
of row and column swaps then the determinant is the negation of the product of the
diagonal elements. If there were an even number of row and column swaps then the
determinant is exactly the product of the diagonal elements.

4 Methods of Finding the Determinant
4.1 Applying the Classical Method
One of the most straightforward ways to find the determinant is the direct application of
the classical algebraic definition as stated in section 2.2. Using this method all that needs
to be done is to calculate the product of every possible permutation and then sum them.

The algorithm would go something like:
CalcDetClassic(input Matrix, output Determinant)
{
 Check for invalid conditions (not square etc)
 If number of rows = 1 then return only element, e[0][0]
 If number of rows = 2 then return e[0][0]*e[1][1] – e[0][1]*e[1][0]

 Initialize a permutation vector
 Initialize return value to zero
 While not used all permutations
 {
 Calculate the product of the current permutation
 If the current permutation is even

 Add the product to the return value
Else
 Subtract the product from the return value

Get the next permutation

 }
}

Notice this algorithm will work regardless of whether the matrix is composed of numbers
or symbolic polynomials. For it to function with polynomials the data structure
representing them would need to support addition, subtraction and multiplication.

The obvious problem with this method is the time requirement. There will be n! terms
that must be added together. That means there are at least n! multiplies and additions and
it is quite likely more multiplies than that. This is bad if you are dealing with just
numbers but terrible if you are working with polynomials. Consider if you must multiply
(x + 3) * (y – 4). While this is “one” multiply it actually requires four multiplies and an
addition.

The C++ source code for this can be found in Appendix A.

4.2 A Recursive Method
This method is perhaps the easiest to implement. However for it to be useful some care
must be taken in memory allocation and depth of recursion. The algorithm would be:

CalcDetRecurse(input Matrix, output Determinant)
{
 Check for invalid conditions (not square etc)
 If number of rows = 1 then return only element, e[0][0]
 If number of rows = 2 then return e[0][0]*e[1][1] – e[0][1]*e[1][0]

 Ret_val = 0
 For j = 0 to (number of columns – 1)
 {
 SubMatrix = Matrix with row 0 and column j removed
 Cofactor = CalcDetRecurse(SubMatrix, Cofactor)
 If j is odd
 Then Cofactor = -1 * Cofactor
 Ret_val = Ret_val + e[0][j] * Cofactor
 }
 Return Ret_val
}

This method will also work for numerical or symbolic matrices. However it too will have
a large number of multiplies, and in the case of polynomials that is not such a good thing.
In particular notice that in the for-loop there will be n multiplies and n additions and there
will be n recursive calls where each call will have n-1 multiplies and n-1 additions which
in turn will have another n-1 recursive calls that each make n-2 multiplies and n-2
additions and so on until n – i, is two.

So in the case of n = 3 there would be three multiplies and three additions in the initial
call and three recursive calls each having two multiplies and one subtraction so the total
cost would be 3 + 3 * 2 = 9 multiplies and 3 + 3*1 = 6 additions. In the case of n = 4
there would be four multiplies and four additions with four recursive calls each having
nine multiples and six additions, so the total cost would be 4 + 4 * 9 = 40 multiplies and
4 + 4 * 6 = 30 additions. In the case of n = 5 there would be five multiplies and five
additions with five recursive calls each having 40 multiplies and 30 additions, for a total
cost of 5 + 5 * 40 = 205 multiplies and 5 + 5 * 30 = 155 additions. For the case of n = 6,
there would be six multiples and six additions with six recursive calls each having 205
multiplies and 155 additions, the total cost would end up being 6 + 6 * 205 = 1236
multiplies and 6 + 6 * 155 = 936 additions. Notice this is actually worse than n!
multiplies and n! additions.

Fortunately there is a way to improve this which will be discussed in Section 4.4. The
C++ source code for this, which implements the improvement in section 4.4, can be
found in Appendix B.

4.3 Gaussian Method using an Upper Triangular Form
For this method we simply transform the original matrix into an upper triangular matrix.
As we transform the matrix we keep track of how many row and column swaps we
perform. We then calculate the determinant by taking the product of the diagonal
elements. If the number of row and column swaps was odd we multiply the result by
negative one. If the number was even we do nothing else. The key component of this
method is the function which converts the original matrix into an upper triangular one.
This can be done using the following algorithm:

MakeUpper(input/output Matrix, output Number of row/column swaps)
{
 If number of rows = 1 then return

 swap_count = 0
 For i = 1 to (number of rows – 1)
 {
 For k = 0 to (i – 1)
 {
 factor = e[i][k] / e[k][k]
 For j = (k + 1) to (number of columns – 1)
 {
 e[i][j] = e[i][j] – (factor * e[k][j])
 }
 }
 // might have set diagonal element to zero, requiring a pivot
 if e[i][i] == 0
 then swap column i for some column j where e[i][j] != 0
 and increase swap_count by 1
 }
 if swap_count is odd return –1 else return 1
 // notice the lower triangle of elements is not explicitly zeroed
 // that could be added in
}

This method, like the previous ones, will work for any type of matrix. This method
requires approximately O(n3) multiplications, divisions and additions. It is probably the
most often implemented method of calculating determinants as it is the method most
people are taught in linear algebra classes. Notice for comparison to the previous methods
for n =3, 33 = 27, for n = 4, 43 = 64, for n = 5, 53 = 125, for n = 6, 63 = 216, and so on.
When working with polynomials the division portion of this algorithm is often the most
costly, it would be nice if the number of divisions could be significantly reduced, or at
least guaranteed to ‘come out evenly’ every time. Which is one of the motivations for the
algorithm in the next section.

The C++ source code for this can be found in Appendix C.

4.4 Improved Recursive Method
This method uses both recursion and an elimination trick to assist in the calculation of the
determinant. This method is based on one proposed in [Bare1968] it is sometimes
referred to as a fraction free determinant calculation. The concept is to create an upper
triangular matrix but to also keep track of the determinant as we go. The algorithm goes
something as follows:

CalcDetRecurse(input Matrix, output Determinant)
{
 Check for invalid conditions (not square etc)
 If number of rows = 1 then return only element, e[0][0]
 If number of rows = 2 then return e[0][0]*e[1][1] – e[0][1]*e[1][0]

 // Construct SubMatrix (with 1 less row and column than this Matrix)
 For i = 1 to (number of rows – 1)
 {
 For j = 1 to (number of rows – 1)
 {
 subtract_me = e[i][0] * e[0][j]
 e[i][j] = e[i][j] * e[0][0] – subtract_me
 }
 } // Submatrix is e[1][1] to e[n-1][n-1] inclusive

 Ret_val = CalcDetRecurse(SubMatrix, Determinant)
 For i = 1 to num_rows – 2
 {
 Determinant = Determinant / e[0][0]
 }
}

Notice this algorithm appears to run with about O(n2) multiplications and additions,
however it is n2 + (n-1)2 + … = (n-1)(2n2 + 5n + 6) / 6 = O(n3). Which is still the best so
far. It will also work with any type of matrix. However it is slightly complicated. To
understand this method it is best to work through an example. We will begin with a
numerical 4x4 matrix and show each submatrix created.

1 2 3 4
5 3 7 1
3 2 2 5

13 11 3 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

7 8 19
4 7 7
15 36 46

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
− − −⎢ ⎥⎣ ⎦

17 27
132 37

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 4193

And then as the recursion unwinds: 4193 / -7 = -599 -599 / 1 = -599, -599 / 1 = -599

Now to fully realize why the method works it might be a good idea to look at a symbolic
matrix and notice how things cancel and why they cancel. To demonstrate this we will
offer a 4x4 matrix and reduce it to an upper triangular matrix. The notation will be as
follows: the subscripts will remain the same and the superscripts will denote the iteration,
the lack of a superscript means iteration 1.

So let us begin with the following matrix:

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

a a a a
b b b b
c c c c
d d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 2 3

0 0
1 1 2 2 3 3

0 0

0 0
1 1 2 2 3 3

0 0

0 0
1 1 2 2 3 3

0 0

0

0

0

a a a a
b bb a b a b a
a a
c cc a c a c a
a a
d dd a d a d a
a a

0

0

0

0

0

0

b
a
c
a
d
a

⎡ ⎤
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

Let = 2
1b 0

1 1
0

bb a
a

− = (a0b1 – a1b0) / a0

2
2b = 0

2 2
0

bb a
a

− = (a0b2 – a2b0) / a0

and so on.

Notice it is the latter form that is being used in this section’s algorithm.
Continuing on:

0 1 2 3
2 2 2
1 2 3
2 2 2
1 2 3
2 2 2
1 2 3

0
0
0

a a a a
b b b
c c c
d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 2 3
2 2 2
1 2 3

2 2
2 2 2 21 1
2 2 3 32 2

1 1
2 2

2 2 2 21 1
2 2 3 22 2

1 1

0

0 0

0 0

a a a a
b b b

c cc b c b
b b

d dd b d b
b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

Again performing a renaming and another iteration we arrive at:

0 1 2 3
2 2 2
1 2 3

3 3
2 3
3 3
2 3

0
0 0
0 0

a a a a
b b b

c c
d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 2 3
2 2 2
1 2 3

3 3
2 3

3
3 3 2
3 3 3

2

0
0 0

0 0 0

a a a a
b b b

c c
dd c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

The straightforward Triangular (Gaussian) method would then calculate the determinant

by multiplying: a0 b1
2 c2

3
3

3 3 2
3 3 3

2

dd c
c

⎛ ⎞
−⎜

⎝ ⎠
⎟ . However, the recursive method described in this

section notices that there is automatically a large amount of cancellation. Specifically it

can be shown, c2
3

3
3 3 2
3 3 3

2

dd c
c

⎛
−⎜

⎝ ⎠

⎞
⎟ can be evenly divided by b1

2 exactly 3-2 = 1 time and

the quotient of that division can in turn be evenly divided by a0 exactly 4-2 = 2 times.

4.5 Method using an Interpolation Trick (univariate)
This particular method has a variety of implementations and clever performance
enhancements. For this paper we will limit things to be as basic as possible. This method
is specifically designed for a matrix that has entries which are univariate polynomials. In
fact there can only be one variable, though it can be found in multiple entries in the
matrix. The motivation for this method is that numeric computations can be performed
much faster than symbolic computations – they have the advantage of hardware and
compiler optimization techniques. So if we put a number in for the variable we will have
a strictly numeric matrix for which we can quickly find the determinant.

To begin the reasoning of this method, notice that the determinant if solved symbolically
would be a univariate polynomial equation. If we can predetermine the degree of this
equation to be d we can use d+1 values for the variable and calculate the determinant d+1
times. This would give us d+1 points to use to interpolate what the univariate polynomial
equation would be. This of course assumes we have a fast way to calculate numeric
determinants and a fast interpolation method, both of which can readily be found, for
example in [Pres2002].

4.5.1 Determining the Degree of the Determinant
So the actual problem to solve is finding d, the degree of the resulting determinant. A
method to do this is presented in [Henr1999] which in turn was based on a method
proposed in [Door1979]. While the method described in those papers is effective we will
present a simpler method, which may or may not be as efficient. It is based on the
improved recursive method described above. The idea is as follows:

Given a symbolic n x n matrix, create a new n x n matrix where each entry e[i][j] is the
highest degree of the variable appearing in the ith row and jth column of the original
matrix. Follow the general steps of the Improved Recursive Algorithm of section 4.4,
however all we need to do is keep track of the degree of the variable that would result
from the various multiplications. Notice it is possible that this highest degree may get
cancelled in a subtraction, however we will assume this does not happen, and thus will
arrive at a maximum bound on the degree. Further note that the divisions could give us a
minimum bound on the degree, as all the divisions must come out even. It should be
obvious this calculation will take no more time than required to calculate one numerical
determinant.

The actual algorithm would go something as follows, we assume the input matrix is the
matrix of maximum degrees:

CalcDegreeOfDet(input Matrix, output MaxDeg)
{
 Check for invalid conditions (not square etc)
 If number of rows = 1
 then return only element, e[0][0]

 If number of rows = 2
 then return Max(e[0][0]+e[1][1], e[0][1]+e[1][0])

 // Construct SubMatrix (with 1 less row and column than this Matrix)
 For i = 1 to (number of rows – 1)
 {
 For j = 1 to (number of rows – 1)
 {
 subtract_me = e[i][0] + e[0][j]
 e[i][j] = Max(e[i][j] + e[0][0], subtract_me)
 }
 } // Submatrix is now e[1][1] to e[n-1][n-1] inclusive
 MaxDeg = CalcDetRecurse(SubMatrix, MaxDeg)

 For i = 1 to num_rows – 2
 {
 MaxDeg = MaxDeg - e[0][0]
 }

 Return MaxDeg
}

4.5.2 Examples of Degree Calculation
To illustrate the above algorithm consider the following:

Let A =

2

3

2 2 4

5
7

x x
x x
x x x

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ , then the matrix of maximum degrees is

1 2 0
3 0 1
2 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Applying the algorithms we get the following:

1 2 0
3 0 1
2 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

max(0 1,2 3) max(1 1,3 0)
max(2 1,2 0) max(4 1,2 1)

+ + + +⎡ ⎤
⎢ + + + +⎣ ⎦

⎥
5 3
3 5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 max(10, 6) = 10

Unwinding the recursion we subtract 1 from 10 exactly 3-2 = 1 time, for a result of d = 9.
This is correct as the determinant is –x9 + 13x5 – x4 – 35x2.

Another example is as follows.

Let A =

3 2

2 3

2 2 4

2

5
7

1
3 5 9 2

x x x
x x x

x x x
x x

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

, then the matrix of maximum degrees is

3 2 0 1
2 3 0 1
0 2 2 4
1 0 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

3 2 0 1
2 3 0 1
0 2 2 4
1 0 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

6 3 4
5 5 7
3 5 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 13
11 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 24

Unwinding we see that 24 – 6 = 18, and then 18 – 3 – 3 = 12. So the degree of the
determinant should be no more than 12. And in fact the degree is exactly 12 as the
determinant is –9x12 + 9x10 + 26x8 + 2x7 – 20x6 – 18x5 + 16x4 – 10x3 + 14x2 – 10x.

4.5.3 Calculating the Interpolation Points
Once we have determined the degree of the determinant to be d we will need to calculate
the determinant at d + 1 unique values. To illustrate this consider the first example in

section 4.5.2 where A =

2

3

2 2 4

5
7

x x
x x
x x x

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ . We found the degree of this determinant to be 9,

so we need to evaluate the determinant for 9+1 = 10 unique values of x. For notation
purposes let | A(vi) | denote the determinant of A when a value of vi is placed in for x.
Let vi = i for i = -4 to 5, thus giving us 10 values = { -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 }.
Using whatever fast numerical determinant method we like, we find that

| A(v-4) | = 248016
| A(v-3) | = 16128
| A(v-2) | = -60
| A(v-1) | = -48
| A(v0) | = 0
| A(v1) | = -24
| A(v2) | = -252
| A(v3) | = -16920
| A(v4) | = -249648
| A(v5) | = -1914000

We then use whatever fast numerical interpolation routine we like to find the polynomial
that goes through the points:

(-4, 248016), (1, -24)
(-3, 16128), (2, -252)
(-2, -60), (3, -16920)
(-1, -48), (4, -249648)
(0, 0), (5, -1914000)

And arrive at the answer of: –x9 + 13x5 – x4 – 35x2.

5 Summary
From the above the reader should now have a basic understanding of what is required to
calculate determinants. It should be apparent that the obvious (definitional) methods,
while useful in solving small matrices may not be the optimal solution for larger
problems. With run times in the order of O(n!) and O(n3) things will take a while to run,
even when using just numeric matrices. When polynomial entries are allowed run times
become even worse in implementation [Gent1973].

For applications dealing with symbolic matrices, from our experience, currently, the
classical method can solve problems up to n = 9, within several minutes. The Gaussian
based method can solve problems up to size about n = 6. The improved recursive method
can likewise solve such problems up to a size of about n = 12. All of them are capable of
solving larger problems, within restrictions of maximum values held within data types,
however the time required quickly becomes unreasonable. The interpolation method can
solve larger problems but its effectiveness depends greatly on the degree of the
determinant polynomial.

One thing to learn from these methods would be that the hybridization of the methods is
likely to improve the effective runtimes. Specifically if a small amount of analysis is
done prior to selecting a method to calculate the determinant, it might make things
extremely easy. Likewise one method might be used to begin the determinant calculation
and another used to finish the smaller, submatrix problems. If automated techniques
could be developed to perform such tasks then runtimes might improve. With this
statement it should be understood that there currently are many specialized techniques for
a great many problems, an integration or a useful generalization of these techniques
should be done in the future. It is hoped that this paper might prove to be helpful for such
an endeavor.

In the Appendices of this paper you will find source code implementing most of the
algorithms described in this paper. The source code is based on polynomial classes as
described in “Designing a Multivariate Polynomial Class” by Brent M. Dingle, April
2004.

Bibliography
[Bare1968] Erwin H. Bareiss, “Sylvester's Identity and Multistep Integer-Preserving

Gaussian Elimination,” Mathematical Computation 22, 103, pp. 565 –
578, 1968.

[Dodg1867] C. L. Dodgson, An Elementary Treatise on Determinants, with Their

Application to Simultaneous Linear Equations and Algebraical Geometry.
London: Macmillan, 1867.

[Door1979] P. M. Van Dooren, P. Dewilde and J. Vandewalle, “On the Determination

of the Smith-MacMillan Form of a Rational Matrix From Its Laurent
Expansion,” IEEE Transactions on Circuits and Systems, Vol. 26, No. 3,
pp. 180-189, 1979.

[Gent1973] W. M. Gentleman and S. C. Johnson, “Analysis of algorithms, a case

study: Determinants of polynomials,” Proceedings of the fifth annual
ACM symposium on Theory of computing, ACM Press, pp. 135-141, 1973.

[Henr1999] D. Henrion and M. Sebek, “Improved Polynomial Matrix Determinant

Computation.” IEEE Trans. on CAS - Pt I. Fundamental Theory and
Applications, Vol. 46, No. 10, pp. 1307-1308, October 1999.

[Pres2002] William H. Press (Editor), Saul A. Teukolsky (Editor), William T.

Vetterling (Editor), Brian P. Flannery (Editor), Numerical Recipes in C++
2nd edition, Cambridge University Press, February 2002.

Appendix A – Source Code for Classical Method
long CPolymat::CalcDetClassic(CPolyfrac &answer_polyf)
{
 CPolyfrac tmp_polyf;
 std::vector<int> v; // contains indices of permutations
 bool even, more;
 int i;
 long num_terms, cur_term;
 long ret_val;

 // default to failure
 ret_val = -1;
 answer_polyf.SetInteger(0);

 if (m_NumRows != m_NumCols) { return ret_val; } // nonsquare = det undefined
 if (m_NumRows <= 0) { return ret_val; } // no matrix entries

 if (m_NumRows == 1) // Do case 1 by 1
 {
 answer_polyf = m_Mat[0][0];
 ret_val = 1;
 }

 else if (m_NumRows == 2) // Do case 2 by 2
 {
 answer_polyf = m_Mat[0][0] * m_Mat[1][1];
 tmp_polyf = m_Mat[0][1] * m_Mat[1][0];
 answer_polyf -= tmp_polyf;
 ret_val = 1;
 }

 else
 {
 v.push_back(0); // initialize permutation index vector v[]
 num_terms = 1;
 for (i=1; i < m_NumRows; i++)
 {
 v.push_back(i);
 num_terms *= i; // num_terms = (n-1)! = (n-1)*(n-2)*...*2*1
 }

 num_terms *= m_NumRows;

 if (num_terms <= 0)
 {
 PostError();
 ret_val = -1;
 return ret_val;
 }

 // answer_polyf init'd to zero above
 even = true;
 more = false;
 for (cur_term=0; cur_term < num_terms; cur_term++)
 {
 NextPermute(v, m_NumRows, &more, &even);

 tmp_polyf = m_Mat[0][v[0]] * m_Mat[1][v[1]];
 for (i=2; i < m_NumRows; i++)
 {
 tmp_polyf *= m_Mat[i][v[i]];
 } // end for i

 if (even)
 {
 answer_polyf += tmp_polyf;
 }
 else
 {
 answer_polyf -= tmp_polyf;

 }
 } // end for cur_term

 ret_val = 1;
 } // end case 3 by 3 or greater

 return ret_val;
} // end CalcDetClassic

Notice that the function NextPermute() computes all the permutations of N integers, one at a time. When the function is
first called more should be set to false, so the function will return the ‘original’ permutation. The parameters should be
obvious in meaning, the n is the number of objects being permuted, v[] is the permutation, more is a flag variable and
even will be set to true or false depending on if the returned permutation is even or odd. It is assumed that if the initial
permutation is 0, 1, 2, 3 then the second will be 0, 1, 3, 2 and the third will be 0, 2, 1, 3 and so on. Effectively all the
permutations starting with 0 are done first, then all those starting with 1, then all those starting with 2, and so on. The
source code would look something like:

void CPolymat::NextPermute(std::vector<int> &v, long n, bool *more, bool *even)
{
 int first, i, i2;
 long less_than_cnt;

 if (! (*more)) // assume first call, order of v is not set
 {
 // Start with the first permutation (ascending order).
 std::sort(v.begin(), v.end());
 *more = true;
 *even = true; // 1,2,3,4,... is always even (positive sign)
 return;
 }
 else // v has been ordered at least once before, continue on
 {
 std::next_permutation(v.begin(), v.end()); // this alters v
 // *more stays true

 // *even needs to be determined
 first = v[0];

 if ((first % 2) == 1) { *even = false; }
 else { *even = true; }

 for (i = 1; i < n; i++)
 {
 less_than_cnt = 0;
 for (i2 = 0; i2 < i; i2++)
 {
 if (v[i2] < v[i]) { less_than_cnt++; }
 }

 less_than_cnt = less_than_cnt % 2;

 if (less_than_cnt == 0) // zero or even number of sign changes
 {
 if ((v[i] % 2) == 1) { *even = !(*even); }
 // else even and anything = anything
 }
 else if (less_than_cnt == 1) // odd number of sign changes
 {
 if ((v[i] % 2) == 0) { *even = !(*even); }
 // else even and anything = anything
 }
 else // this should never happen
 {
 PostError();
 }
 } // end for i
 } // end if *more was true

} // end NextPermute

Appendix B – Source Code for Recursive Method

long CPolymat::CalcDetRecurse(long start_index)
{
 long ret_val;
 long size, i, j;

 m_tmpPolyf.SetInteger(0);
 size = m_NumRows - start_index;

 ret_val = -1; // default to failure

 if (start_index == 0)
 {
 m_RecurseDet.SetInteger(0);
 }

 // TODO: Should check that m_Mat[start_index][start_index] is NOT zero

 if (size < 1) // shouldn't happen
 {
 m_RecurseDet = m_Mat[0][0];
 }
 else if (size == 1)
 {
 m_RecurseDet = m_Mat[m_NumRows-1][m_NumCols-1];
 ret_val = 1;
 }
 else
 {
 // Set up the submatrix – notice we alter m_Mat, destroying it BUT save memory
 for (i=start_index+1; i < m_NumRows; i++)
 {
 for (j=start_index+1; j < m_NumRows; j++)
 {
 m_tmpPolyf = m_Mat[i][start_index] * m_Mat[start_index][j];
 m_Mat[i][j] *= m_Mat[start_index][start_index];
 m_Mat[i][j] -= m_tmpPolyf;
 } // end for j
 } // end for i

 ret_val = CalcDetRecurse(start_index + 1);
 // m_tmpPolyf = result of the above call

 if (ret_val == 1) // success
 {
 for (i=0; i < size - 2; i++)
 {
 m_RecurseDet /= m_Mat[start_index][start_index];
 }
 }
 }

 return ret_val;
} // end DetRecurse

Appendix C – Source Code for Gaussian Method

long CPolymat::MakeUpper()
{
 CPolyfrac tmp_frac;
 long mat_size, last_row;
 long i, j, k;
 long num_swaps;
 bool zero_on_diag, swapped;
 long ret_val;

 ret_val = 1; // default to success
 num_swaps = 0;
 zero_on_diag = false;

 // For this to work for determinant calcs rows must = cols
 // this algorithm was based on that assumption (it might still work)
 if (m_NumRows != m_NumCols)
 {
 return 0;
 }

 mat_size = m_NumRows;
 last_row = mat_size;

 // Init tmp to all zeros - is done by the CPolyFrac constructor
 num_swaps = SetFirstRowForElim(); // guarantees m_Mat[0][0] is NOT zero
 // returns < 0 if NOT possible to do so
 if (num_swaps < 0) // unable to setup row[0]
 {
 return 0;
 }

 // row 0 stays unaltered
 for (i=1; i < last_row; i++) // last_row = mat_size unless get an all zero row
 {
 for (k=0; k < i; k++)
 {
 tmp_frac = m_Mat[i][k] / m_Mat[k][k];

 for (j = k+1; j < mat_size; j++)
 {
 m_Mat[i][j] = m_Mat[i][j] - (tmp_frac * m_Mat[k][j]);

 }
 }

 // It is now possible we set a diagonal element to zero
 // so we shall do column swaps to fix this
 // If this fails then row i is all zeros, so
 // there would be a zero on the diagonal somewhere anyway,
 // and we will leave it here.
 if (m_Mat[i][i].IsZero())
 {
 j = i+1; // all cols left of col[i] will have zeros in row[i]
 swapped = false;
 while ((!swapped) && (j < mat_size))
 {
 if (!m_Mat[i][j].IsZero())
 {
 SwapCols(i, j);
 swapped = true;
 num_swaps++;
 }
 j++;
 }

 if (!swapped)
 {

 zero_on_diag = true;
 // could just return zero here
 // instead swap this row with current "last" row
 // and decrement number of rows to look at
 // (as the last ones will be all zero)
 SwapRows(i, last_row - 1);
 last_row--;
 }

 } // end if [i][i] is zero
 } // end for i

 if (num_swaps % 2 == 0)
 {
 ret_val = 1;
 }
 else
 {
 ret_val = -1;
 }

 if (zero_on_diag)
 {
 // determinant must be zero, and we moved zero rows to bottom of mat
 ret_val = 0;
 }

 return ret_val;
} // end MakeUpper

	Title
	Abstract
	1 Introduction
	2 Determinant Definition
	2.1 The Geometric Definition
	2.2 The Classical Algebraic Definition
	2.3 The Recursive Def using Minors and Cofactors

	3 Solving Systems of Equations
	4 Methods of Finding the Determinant
	4.1 Applying the Classical Method
	4.2 A Recursive Method
	4.3 Gaussian Method using an Upper Triangular Form
	4.4 Improved Recursive Method
	4.5 Method using an Interpolation Trick (univariate)
	4.5.1 Degree of the Determinant
	4.5.2 Examples of Degree Calculation
	4.5.3 Calculating the Interpolation Points

	5 Summary
	Bibliography
	Appendix A - Classical Method Source Code
	Appendix B - Recursive Method Source Code
	Appendix C - Gaussian Method Source Code

