
Simple Introduction to Makefiles

Makefiles provide an “easy” way to organize compilation of your code.
This document provides only the most basic of examples. Its intent is only to demonstrate how to create and use a
makefile to compile and link multiple files to create an executable file.

Assume there are three files such as:

HelloMain.cpp HelloFunction.cpp HelloFunction.h

#include "HelloFunction.h"

int main()
{
 HelloFunction();
 return 0;
}

#include "HelloFunction.h"

void HelloFunction()
{
 cout << "Hello there\n";
}

// include standard stuff

void HelloFunction();

From the terminal window at the command prompt, these files would normally be compiled and linked like:

g++ -o hello HelloMain.cpp HelloFunction.cpp

Aside: this assumes g++ looks in the current directory for. h files. You may need -I at the end of the g++ line

And then to run the result
 ./hello

This is not bad when there are just 2 files. But when there are 20 or 30 it begins to get tiresome to type and is prone to
error. To mitigate this you can create a makefile (literally the file is named makefile) in the same directory as your cpp
and h files. TABS and end-of-lines need to be unix style so create your makefile in linux.

A possible makefile to compile and link the above 3 files might look something like:

makefile

hello: HelloMain.o HelloFunction.o
 g++ -o hello HelloMain.o HelloFunction.o

HelloMain.o: HelloMain.cpp
 g++ -c HelloMain.cpp

HelloFunction.o: HelloFunction.cpp
 g++ -c HelloFunction.cpp

clean:
 rm -rf *.o hello

Once the above makefile is created then (in the same directory as the files)
To compile and link only requires typing:
 make hello

This will produce the executable file named hello. Which again can be run via
 ./hello

How does it work?

makefile

hello: HelloMain.o HelloFunction.o

This says “hello” is made from HelloMain.o
and HelloFunction.o

 g++ -o hello HelloMain.o HelloFunction.o

This says take those 2 files and using g++
link them together. Note the –o hello tells
g++ to name the resulting executable hello
There is a tab before the g++

HelloMain.o: HelloMain.cpp This says HelloMain.o is made from
HelloMain.cpp

 g++ -c HelloMain.cpp

This says take that file and compile it.
The –c option means just compile. This
defaults to creating a file named
HelloMain.o
There is a tab before the g++

HelloFunction.o: HelloFunction.cpp This says HelloFunction.o is made from
HelloFunction.cpp

 g++ -c HelloFunction.cpp

This says take that file and compile it.
The –c option means just compile. This
defaults to creating a file named
HelloFunction.o
There is a tab before the g++

clean: This says clean needs no files
 rm -rf *.o hello This says recursively remove all files

ending in .o and the file named hello
There is a tab before the rm

In Linux there is a “make” program installed. To run it you just type
 make [argument]

Overlooking and simplifying things in an extreme manner:

When the make program runs, it looks in the current directory for a text file named makefile
Inside the makefile it looks for [argument]
If [argument] is made from other stuff, the make program will then go look for that other stuff in the current
directory. If it finds it in the current directory it uses what is there. If it does not find it then it looks in the
makefile to see if there are directions on how to make the missing stuff.
Once all the required stuff is found or made the make program then executes the “next line” after [argument]:

So if you type
 make clean
This requires no files so the “next line” is immediately executed
 rm –rf *.o hello

So when you type
 make clean

All files ending in .o and the file hello will be recursively removed.

Now if you type
 make hello

The make program discovers this requires HelloMain.o and HelloFunction.o to exist in the current directory.
Assuming they do, the make program then executes
 g++ -o hello HelloMain.o HelloFunction.o

And you get the desired executable file named hello.

If they do not exist then the make program looks in the Makefile for how to create those .o files.
For HelloMain.o it discovers it in turn requires the file HelloMain.cpp to exist in the current directory.
Assuming it does the make program then executes
 g++ -c HelloMain.cpp
which creates the needed HelloMain.o file

Likewise occurs for HelloFunction.o

Once both HelloMain.o and HelloFunction.o are successfully created then the make program returns to the line
 hello: HelloMain.o HelloFunction.o
And then executes
 g++ -o hello HelloMain.o HelloFunction.o

And you get the desired executable file named hello

In sum you would want to type
 make clean
 make hello
Each time you wanted to test changes in the source code.

How to change it for source files of a different name and/or more source files

If you happen to have just two files then it is just a search and replace
hello is the name of the desired executable
HelloMain is the prefix of one of your source files
HelloFunction is the prefix of the other source file

makefile

hello: HelloMain.o HelloFunction.o
 g++ -o hello HelloMain.o HelloFunction.o

HelloMain.o: HelloMain.cpp
 g++ -c HelloMain.cpp

HelloFunction.o: HelloFunction.cpp
 g++ -c HelloFunction.cpp

clean:
 rm -rf *.o hello

If you have more than three files then the first 2 are as above.
The third file (and any other additional cpp files) requires extra stuff added
But it is really just doing the same thing that is being done for the first 2
Assume the third file name is ThirdFile.cpp…

makefile

hello: HelloMain.o HelloFunction.o ThirdFile.o
 g++ -o hello HelloMain.o HelloFunction.o ThirdFile.o

HelloMain.o: HelloMain.cpp
 g++ -c HelloMain.cpp

HelloFunction.o: HelloFunction.cpp
 g++ -c HelloFunction.cpp

ThirdFile.o: ThirdFile.cpp
 g++ -c ThirdFile.cpp

clean:
 rm -rf *.o hello

So for four files, with the fourth file named File4.cpp, it would look like:

makefile

hello: HelloMain.o HelloFunction.o ThirdFile.o File4.o
 g++ -o hello HelloMain.o HelloFunction.o ThirdFile.o File4.o

HelloMain.o: HelloMain.cpp
 g++ -c HelloMain.cpp

HelloFunction.o: HelloFunction.cpp
 g++ -c HelloFunction.cpp

ThirdFile.o: ThirdFile.cpp
 g++ -c ThirdFile.cpp

File4.o: File4.cpp
 g++ -c File4.cpp

clean:
 rm -rf *.o hello

And so on…

