
CS-244 Data Structures and Algorithms                                                                   Name:    

  

 

Assignment 3 – Pointers and Arrays 
 
Due: Oct 2, 2014, 8:00 AM 
Late penalties will be as described in the syllabus. 
Points may be deducted for failure to follow these instructions. 
 
 
General Objectives: 
 Learn how to use and apply C++ pointers and their relation to arrays. 
 Demonstrate ability to think and communicate logically 
 
 
Graded Part of the Assignment: 
 The worksheet begins with some background material, after which are several activity and question sections. 
 1. Fill in all the blanks in the question sections. 

2. Type your name into the header blank (above right corner) 
 
 
What to turn in: 
 Save a copy of this Word Document named:  A03_LAA_yourlastname.docx 
 Be certain the items noted above are completed. 
 Submit the completed document to the appropriate D2L dropbox. 
 
 
 
 
Background Material: 
 
 
 
 
 
 
 
 
 
  

What are pointers? It is a simple question, perhaps. 
 
Consider the statement: 

int j  = 77; 
 
From this statement the compiler assigns an address to the variable named j. This means j will be stored at one 
specific address in the computer’s (RAM) memory. Exactly which part of the computer’s memory depends on 
various details occurring at runtime as well as at compile time. Things that hold influence include what 
operating system, what hardware architecture, and similar. The details of this are not, for the moment, that 
important to the topic at hand. 
 
What is important to understand is that when a variable is declared, memory storage with an address is 
reserved for it. The memory address is fixed, but the data value of the variable can be changed during 
execution. 

Some content has been derived from 
Data Structures Using C++, 2nd Edition 
by D.S. Malik 



CS-244 Data Structures and Algorithms                                                                   Name:    

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Again referencing the statement: 
    j = 77; 
We see the data value 77 is temporarily placed in j and may be used later. In other words, the name of the 
variable and its address are fixed once the program starts executing, however, its contents may be changed. 
 
In general practice the address of the variable is displayed as a hexadecimal number. This value may be 
displayed to the screen by use of the & (address-of operator). As an experiment, create and run the following 
program: 
 
#include <iostream> 
using namespace std;  
int main() 
{ 
   int myvar; 
   cout << "Enter an integer: "; 
   cin >> myvar; 
   cout << "The entered data value is: " << myvar << endl; 
   cout << "It is stored at address " << &myvar << endl; 
   return 0; 
} 
 
This will produce output similar to the following: 
 
For 32-bit systems the 0x28fedc = 0x0028fedc 
hexadecimal will be converted to 32 binary bits 
0000 0000 0010 1000 1111 1110 1101 1100 
 
or rather 4 bytes 
[ 0         0    ] [   2        8   ]  [  f         e    ] [  d         c    ]  hexadecimal 
[0000 0000] [0010 1000] [1111 1110] [1101 1100]  binary 

How does this relate to pointers? 
 
Just as we can create variables to store integer, character and floating point values, we can also 
create variables to store memory addresses of other variables. 
 
Variables that store memory addresses instead of actual data values are called pointers. 
 
Consider the statements: 
    int *p; 
    int num; 
 
The variable named p is a pointer to an int, and num is a variable of type int. Assume that memory 
location 1200 is allocated for p and memory location 1800 is allocated for num, as shown in the figure 
below 
 



CS-244 Data Structures and Algorithms                                                                   Name:    

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Continuing from the previous statements, consider the following additional lines of code: 
 
   1. num = 78; 
   2. p = &num; 
   3. *p = 24;  // recall this de-references p 
 
The following shows the values of the variables after the execution of each statement. 
 

Pointer Arithmetic 
 
We can add or subtract from pointer variables. However, adding a number to a pointer does not add 
that many bytes but rather adds that number of storage units. Suppose the size of memory allocated 
for an int variable is 4 bytes, a double variable is 8 bytes, and a char variable is 1 byte. Now consider 
the statements: 
   int        *p; 
   double *q; 
   char     *chPtr; 
 
The statement p++; or p = p + 1; 
increments the value of p by 4 bytes because p is a pointer to type int. 
 
The statement q++; 
increments the value of q by 8 bytes because q is a pointer to type double. 
 
The statement chPtr++; 
increments the value of chPtr by 1 byte because it is a pointer to type char. 
 
The statement p = p + 3; 
increments the value of p by 12 bytes (the size of three integers) 
 
 



CS-244 Data Structures and Algorithms                                                                   Name:    

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Relating Arrays to Pointers 
 
When arrays are defined, the array name holds the starting address of the array. Just as when we 
declare a single variable, the array’s address is fixed. Thus the array name is a constant pointer. It 
holds an address but it cannot be made to point to another address. 
 
Consider the following statements: 
     int *p; 
     int j[ ] = { 2, 6, 3, 7, 4 }; 
 
Assume the array is allocated starting at memory location 0x2b02: 
 

2b02 2b06 2b0a 2b0e 2b12 
2 6 3 7 4 

j[0] j[1] j[2] j[3] j[4] 
 
The integer array, as shown above is allocated with 4 bytes for each slot of the array. 
 
The statement p = j; 
would set p to have the value 0x2b02 
 
The statement p = &j[3]; 
would set p to have the value 0x2b0e 
 
And if followed by p++; 
would set p to have the value 0x2b12 
 
The statement j = p; 
would result in a compiler error, as you cannot change the value of a constant pointer. 

Pointers may also be used to create dynamic arrays. 
 
This requires caution as you can lose the address where the array starts if you are not careful. 
You must also de-allocate the memory you dynamically allocate to avoid memory leaks. 
The following code segment illustrates how to dynamically allocate an array to match the size 
requested by the user. The new operator allocates the memory. The delete [] operator de-allocates it. 
 
int *intList; 
int arraySize; 
cout << "Enter array size: "; 
cin >> arraySize; 
cout << endl; 
intList = new int[arraySize]; 
   //... code skipped here 
delete [] intList; 
intList = NULL; 
 



CS-244 Data Structures and Algorithms                                                                   Name:    

  

 

Problem 1 
Build and run the following program. 
Based on the results, fill in the table as indicated. 
 
#include <iostream> 
  
using namespace std; 
  
int main() 
{ 
   int i = 23, j = 55; 
   cout << " i = " << i  << ",\t  j = " << j << endl; 
   cout << "&i = " << &i << ",\t &j = " << &j << endl; 
   return 0; 
} 
 
 
 
 
 
 

Variable Name Data Value Address 
 

i 
 

  

 

j 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



CS-244 Data Structures and Algorithms                                                                   Name:    

  

 

Problem 2 
Build and run the following program. Based on the results, answer the questions as indicated. 
 
#include <iostream> 
using namespace std; 
int main() 
{ 
   int i = 55, j = 100; 
   cout << " i = " << i  << ",\t  j = " << j << endl; 
   cout << "&i = " << &i << ",\t &j = " << &j << endl; 
 
   // assign new values... 
   i = 7; 
   j = 8; 
   // print again 
   cout << " i = " << i  << ",\t  j = " << j << endl; 
   cout << "&i = " << &i << ",\t &j = " << &j << endl; 
 
   return 0; 
} 
Part a) 
After the second cout add the statement: 
 &i = 4; 
Attempt to compile and run. 
Are we allowed to change the addresses of variables? 
 
    ________________ 
Part b) 
After the fourth cout add the statement: 
 j = &i; 
Attempt to compile and run. 
Is j a pointer variable? 
    ________________ 
 
Are we allowed to assign the address of i to j, 
using this syntax? 
 
    ________________ 
Part c) 
Replace the code from part b with: 
 j = (int)&i;   // may want couts after this too 
Attempt to compile and run. 
Are we allowed to assign the address of i to j, 
using this syntax?  
    ________________ 
 
Part d)  
What do you conclude from parts b and c? 
 

__________________________________________________________________________________________ 
 
COMPLETE THIS PAGE in the document you turn in to D2L --- with your answers clearly indicated 



CS-244 Data Structures and Algorithms                                                                   Name:    

  

Problem 3 
While integer type variables can store memory address values, the compiler will still treat their data value as just a 
number. Pointer variables store memory addresses and are recognized by the compiler to be treated in “special” ways.  
 
Build and run the following program. Based on the results, answer the questions and fill in the tables as indicated. 
 
#include <iostream> 
  
using namespace std; 
  
int main() 
{ 
   int i = 7;      // Statement 1 
   int *pOne;      // Statement 2 
   float x = 0.00; 
    
   cout << "i = " << i << "\t&i = " << &i << endl; 
    
   pOne = &i;      // Statement 3 
   cout << "pOne = " << pOne << endl; 
 
   return 0; 
} 
 
Part a)  
Complete the table: 

 
 
 
 
 
 
 
 
 

 
 
Part b) Try assigning an address of a float as shown below to pOne. Does it work? _______________ 

pOne = &x; 
 
 
 
 
 
 
 
 
 
 
COMPLETE THIS PAGE in the document you turn in to D2L --- with your answers clearly indicated 
  

Variable Name Data Value Address 
 

i 
 

  

 

pOne 
 

  



CS-244 Data Structures and Algorithms                                                                   Name:    

  

Problem 4 
This problem set is to demonstrate the relationship between array names, subscripts, and pointer arithmetic.  
Suggest: create a table showing the value and memory address for each variable in both arrays. 
Consider the following code segment: 
int main() 
{ 
   int   intArray[10]={2,4,6,8}; // array of 10 integers 
   char  chrArray[11];        // array of 11 characters, 
   .                // room for 10 useable characters 
   .                // and the null terminator 
   . 
} 
Assume the space reserved for the integer array starts at memory address:  4000 
Assume the space reserved for the character array starts at memory address:  1800 
 
a) Where does the integer array end? Hint: assume 32-bit integers  a) ___________________ 
  
b) Where does the character array end?  b) ___________________ 
 
c) What is the value of intArray?  c) ___________________ 
 
d) What is the value of charArray?  d) ___________________ 
 
e) What is the value of intArray[0]?  e) ___________________ 
 
f) What is the value of intArray[3]?  f) ___________________ 
 
g) What is the value of intArray + 1?  g) ___________________ 
 
h) What is the value of intArray + 9?  h) ___________________ 
 
i) "The name of an array is a pointer to the array."  
     Describe the difference between the expressions chrArray and *chrArray 
 
 ___________________________________________________________________________ 
 
 ___________________________________________________________________________ 
 
j) Describe the difference between intArray + 1, intArray[1], and *(intArray + 1) 
 
 ___________________________________________________________________________ 
 
 ___________________________________________________________________________ 
 
k) What is the value of &chrArray[0]?       k) ___________________ 
 
l) What is the value of &chrArray[1]?        l) ___________________ 
 
m) What is the value of &chrArray?       m) ___________________ 
 
COMPLETE THIS PAGE in the document you turn in to D2L --- with your answers clearly indicated 
-=-=-= 


