
CS-244 Data Structures and Algorithms Name: _________________________

Assignment 7 – Hashing

Due: Nov 11, 2014, 8:00 AM
Late penalties will be as described in the syllabus.
Points may be deducted for failure to follow these instructions.

General Objectives:
 Learn how to use and apply Hashing Methods
 Demonstrate ability to think and communicate logically

Graded Part of the Assignment:

1. Read all the background material
2. Answer all questions on the green pages and as otherwise indicated
3. Type your name into the header blank (above right corner)

What to turn in:
 Save a copy of this Word Document named: A07_Hashing_yourlastname.docx
 Be certain the items noted above are completed.
 Submit the completed document to the appropriate D2L dropbox.

Background Material:

Alfred F = 5 % 6 = 5

Alessia E = 4 % 6 = 4

Amina I = 8 % 6 = 2

Amy Y = 24 % 6 = 0

Andy D = 3 % 6 = 3

Anne N = 13 % 6 = 1

This document is based on: Active Learning
Approach to Data Structures using C++
by Dr. Timothy Budd

Hash Tables (Open Address Hashing – Linear Probing)

Consider the following story. Six friends; Alfred, Alessia, Amina, Amy,
Andy and Anne, have a club. Amy is in charge of writing a program to
do bookkeeping. Dues are paid each time a member attends a meeting,
but not all members attend all meetings. To help with the programming
Amy uses a six-element array to store the amount each member has
paid in dues.

Amy uses an interesting fact. If she selects the third letter of each
name, treating the letter as a number from 0 to 25, and then divides
the number by 6, each name yields a different number. So in O(1) time
Amy can change a name into an integer index value, then use this value
to index into a table. This is faster than an ordered data structure,
indeed almost as fast as a subscript calculation.

CS-244 Data Structures and Algorithms Name: _________________________

What Amy has discovered is called a perfect hash function for her current set of names.
Specifically no two names map to the same index, thus no collisions occur. In general, a hash
function is a function that takes as input an element and returns an integer value. Almost always
the index used by a hash algorithm is the remainder after dividing this value by the hash table
size. So, for example, Amy’s hash function returns values from 0 to 25. She divided by the
table size (i.e. 6) in order to get an index.

The idea of hashing can be used to create a variety of different data structures. Of course,
Amy’s “perfect” system falls apart when the set of names is different. Suppose Alan wishes to
join the club. Amy’s calculation for Alan will yield 0, the same value as Amy. Two values that have
the same hash are said to have collided. The way in which collisions are handled is what
separates different hash table techniques. Almost any process that converts a value into an
integer can be used as a hash function. Strings can interpret characters as integers (as in Amy’s
club), doubles can use a portion of their numeric value, objects can use one or more fields.

CS-244 Data Structures and Algorithms Name: _________________________

0 = aiqy 1 = bjrz 2 = cks 3 = dlt 4 = emu 5 = fnv 6 = gow 7 = hpx

Amina Andy Alessia Alfred Aspen

0 = aiqy 1 = bjrz 2 = cks 3 = dlt 4 = emu 5 = fnv 6 = gow 7 = hpx

Amina Andy Alessia Alfred Anne Aspen

0 = aiqy 1 = bjrz 2 = cks 3 = dlt 4 = emu 5 = fnv 6 = gow 7 = hpx

Amina Agnes Andy Alessia Alfred Anne Aspen

0 = aiqy 1 = bjrz 2 = cks 3 = dlt 4 = emu 5 = fnv 6 = gow 7 = hpx

Amina Agnes Alan Andy Alessia Alfred Anne Aspen

The first technique you will explore is termed open-address hashing. Here all elements are
stored in a single large table. Positions that are not yet filled are given a null value. An eight-
element table using Amy’s algorithm would look like the following:

Notice that the table size is different, and so the index values are also different (i.e. mod 8 was
used instead of mod 6). The letters at the top show characters that hash into the indicated
locations. If Anne now joins the club, we will find that the hash value (namely, 5) is the same as
for Alfred. So to find a location to store the value Anne, we probe linearly for the next free
location. This means to simply move forward, position by position, until an empty location is
found. In this example the next free location is at position 6. This results in the following:

Now suppose Agnes wishes to join the club. Her hash value, 5, is already filled. The probe moves
forward to the next position, and then the next, and when the end of the array is reached it
continues with the first element, eventually finding position 1:

Finally, suppose Alan wishes to join the club. He finds that his hash location, 0, is filled by
Amina. The next free location is not until position 2:

We now have as many elements as can fit into this table. The ratio of the number of elements to
the table size is known as the load factor, written λ. For open address hashing the load factor
is never larger than 1. Just as a Vector was doubled in size when necessary, a common solution to
a full hash table is to move all values into a new and larger table when the load factor becomes
larger than some threshold, such as 0.85. To do so a new table is created, and every entry in the
old table is rehashed this time dividing by the new table size to find the index to place into the
new table.

CS-244 Data Structures and Algorithms Name: _________________________

λ (1/(1 - λ))

0.25 1.3

0.5 2.0

0.6 2.5

0.75 4.0

0.85 6.6

0.95 19.0

Searching for values and related actions

To see if a value is contained in a hash table the test value is first hashed. But just because the
value is not found at the given location doesn’t mean that it is not in the table. Think about
searching the table above for the value Alan, for example. Instead, an unsuccessful test must
continue to probe, moving forward until either the value is found or an empty location is
encountered.

Removing an element from an open hash table is problematic. We cannot simply replace the
location with a null entry, as this might interfere with subsequent search operations. Imagine
that we replaced Agnes with a null value in the table given above, and then once more performed
a search for Alan. What would happen?

One solution to this problem is to not allow removals. The second solution is to create a special
type of marker termed a tombstone. A tombstone replaces a deleted value, can be replaced by
another newly inserted value, but does not halt the search.

How fast are hash table operations? The analysis depends upon several
factors. We assume that the time it takes to compute the hash value is
constant. But what about distribution of the integers returned by the
hash function? It would be perfectly legal for a hash function to always
return the value zero  legal, but not very useful.

The best case occurs when the hash function returns values that are
uniformly distributed among all possible index values; that is, for any input
value each index is equally likely. In this situation one can show that the
number of elements that will be examined in performing an addition,
removal or test will be roughly 1/(1 – λ). For a small load factor this is
acceptable, but degrades quickly as the load factor increases. This is why
hash tables typically increase the size of the table if the load factor
becomes too large.

Imagine that the colored squares in the ten-element table at right
indicate values in a hash table that have already been filled. Now
assume that the next value will, with equal probability, be any of the ten
values. What is the probability that each of the free squares will be
filled? Since both positions 1 and 2 are filled, any value that maps into
these locations must go into the next free location, which if 3. So the
probability that square 3 will be filled in 3/10, while the probability that
square 0 will be filled is only 1/10. This phenomenon, where the larger a
block of filled cells becomes, the more likely it is to become even larger,
is known as clustering. (A similar phenomenon explains why groups of cars
on a freeway tend to become larger). Clustering is just one reason why it
is important to keep the load factor of hash tables low. Simply moving to
the next free location is known as linear probing.

CS-244 Data Structures and Algorithms Name: _________________________

Open Address Hashing – Questions to Answer

1. What does it mean to “hash” a value?

2. What is a hash function?

3. What is a perfect hash function?

4. What does it mean when two key values collide?

5. What does it mean to (linearly) probe for a free location in an open address hash table?

6. Why is it “bad” when the load factor becomes too large?

7. Using (linear) probing hashing, fill in the below hash table with a hash function of: mod 7 (i.e. x % 7)
 with the following elements: 14, 22, 33, 3, 21, 55

0 1 2 3 4 5 6

COMPLETE THIS PAGE in the document you turn in to D2L --- indicate your answers above

CS-244 Data Structures and Algorithms Name: _________________________

Hash Tables using Buckets
In the previous lesson you learned about the concept of hashing, and how it was used in an open address
hash table (with linear probing). In this lesson you will explore a different approach to dealing with
collisions, the idea of hash tables using chaining. A hash table that uses chaining is really a combination
of an array and a linked list. Each element in the array (the hash table) is a head pointer for a linked list.
All elements that hash into the same location (same bucket) will be stored in the list. This is illustrated
in the below image:

There are 2 basic steps to putting an element into the table. The first is to use the hash function to get
the index into the table (i.e. what bucket does the element go to). Assuming the bucket at that index is
empty then the element is added as the first element in the bucket’s list. If there is already an element
at that index, the element to be added is just added onto the bucket’s list. This results in a chaining of
elements for each index (i.e. collisions mean the bucket at the indicated index gets more stuff in it).

Notice the major behavior difference between chaining and probing is what happens when a collision
occurs.

As before, the load factor (λ) is defined as the number of elements divided by the table size. In this
structure the load factor can be larger than one, and represents the average number of elements stored
in each list, assuming that the hash function distributes elements uniformly over all positions. Since the
running time of the Find() and Delete() functions are both proportional to the length of the list, they are
considered to be O(λ). Therefore the execution time for chaining-based hash tables is fast only if the
load factor remains small. A typical technique is to resize the table (doubling the size, as with the vector
and the open address, probing-based, hash table) if the load factor becomes larger than 10.

.

--

-

-

Some call this type of method chaining.

CS-244 Data Structures and Algorithms Name: _________________________

1. What is a bucket (with regard to chaining based hashing)?

2. How are chaining based hash tables similar to those used in open address hashing? How are they
different?

3. What is the definition of the load factor for a chaining based hash table?

4. Assuming that the chaining based hash function in use distributes the elements evenly over all
buckets, what is another interpretation of the load factor?

5. Explain how the chaining based hash table combines features of an array and a linked list.

COMPLETE THIS PAGE in the document you turn in to D2L --- indicate your answers above

