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Queue and Singly Linked List 
• Singly linked list Operations 

 
– insertFront(e): inserts an 

element on the front of the list 
 

– removeFront(): returns and 
removes the element at the 
front of the list 
 

– insertBack(e): inserts an 
element on the back of the list 
 

– removeBack(): returns and 
removes the element at the end 
of the list 

• Main queue operations: 
• enqueue(e): inserts an element at 

the end of the queue 
 

• dequeue(): removes and returns 
the element at the front of the 
queue 
 

• front(): returns the element at the 
front without removing it 
 

• size(): returns the number of 
elements stored 

• isEmpty(): returns a Boolean 
value indicating if there are no 
elements in the queue 
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Graded In-Class Exercise: Qlist 

• Describe how to implement a queue  
using a singly-linked list 
• Based on previous slide 

 
• Queue operations:  

• enqueue(x), dequeue(), front(), size(), isEmpty() 
 

• For each operation, give the running time in Big-Oh 
 

• Submit your word document / powerpoint slide to the 
appropriate dropbox on D2L 
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Queue as a Singly Linked List 
• CLAIM: 

• We can implement a queue with a singly linked list 
– The front element is stored at the head of the list 
– The rear element is stored at the tail of the list 

 
• The space used is O(n)  
• Each operation of the Queue ADT takes O(1) time  

• enqueue, dequeue, front, size, isEmpty each take O(1) time 
• The following slides show how 

 
• NOTE: we do not have the limitation of the array based 

implementation on the size of the stack because the size 
of the linked list is not fixed,  

• i.e. the queue is NEVER full. 
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Queue and Singly Linked List 
• Singly linked list Operations 

 
 

 

 
– removeFront(): returns and 

removes the element at the 
front of the list 
 

– insertBack(e): inserts an 
element on the back of the list 
 

• Main queue operations: 
• enqueue(e): inserts an element at 

the end of the queue 
 

• dequeue(): removes and returns 
the element at the front of the 
queue 
 

• front(): returns the element at the 
front without removing it 
 

• size(): returns the number of 
elements stored 

• isEmpty(): returns a Boolean 
value indicating if there are no 
elements in the queue 

front() would require a minor 
alteration or addition to LinkedList 
very similar to removeFront() 

Solution Provided 



Queue and Singly Linked List 
• Singly linked list Operations 

 
 

 

 
– removeFront(): returns and 

removes the element at the 
front of the list 
 

– insertBack(e): inserts an 
element on the back of the list 
 

• Main queue operations: 
• enqueue(e): inserts an element at 

the end of the queue 
 

• dequeue(): removes and returns 
the element at the front of the 
queue 
 

• front(): returns the element at the 
front without removing it 
 

• size(): returns the number of 
elements stored 

• isEmpty(): returns a Boolean 
value indicating if there are no 
elements in the queue 

size() and isEmpty() would require 
the addition of a counter that increments 
each time enqueue() is called and 
decrements when dequeue() is called 
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Queue as a Singly Linked List 
• CONCLUSION: 

• We can implement a queue with a singly linked list 
– The front element is stored at the head of the list 
– The rear element is stored at the tail of the list 

 
• The space used is O(n)  
• Each operation of the Queue ADT takes O(1) time  

• enqueue, dequeue, front, size, isEmpty each take O(1) time 

 
• NOTE: we do not have the limitation of the static array 

based implementation on the size of the stack because 
the size of the linked list is not fixed,  

• i.e. the queue is NEVER full. 
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