
Graded ICA205
Qlist

CS 244

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– insertFront(e): inserts an

element on the front of the list

– removeFront(): returns and
removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

– removeBack(): returns and
removes the element at the end
of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

Solution Provided

Graded In-Class Exercise: Qlist

• Describe how to implement a queue
using a singly-linked list
• Based on previous slide

• Queue operations:

• enqueue(x), dequeue(), front(), size(), isEmpty()

• For each operation, give the running time in Big-Oh

• Submit your word document / powerpoint slide to the
appropriate dropbox on D2L

Solution Provided

Queue as a Singly Linked List
• CLAIM:

• We can implement a queue with a singly linked list
– The front element is stored at the head of the list
– The rear element is stored at the tail of the list

• The space used is O(n)
• Each operation of the Queue ADT takes O(1) time

• enqueue, dequeue, front, size, isEmpty each take O(1) time
• The following slides show how

• NOTE: we do not have the limitation of the array based

implementation on the size of the stack because the size
of the linked list is not fixed,

• i.e. the queue is NEVER full.

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– insertFront(e): inserts an

element on the front of the list

– removeFront(): returns and
removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

– removeBack(): returns and
removes the element at the end
of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– insertFront(e): inserts an

element on the front of the list

– removeFront(): returns and
removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

– removeBack(): returns and
removes the element at the end
of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– insertFront(e): inserts an

element on the front of the list

– removeFront(): returns and
removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

– removeBack(): returns and
removes the element at the end
of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– insertFront(e): inserts an

element on the front of the list

– removeFront(): returns and
removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

– removeBack(): returns and
removes the element at the end
of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– removeFront(): returns and

removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

front() would require a minor
alteration or addition to LinkedList
very similar to removeFront()

Solution Provided

Queue and Singly Linked List
• Singly linked list Operations

– removeFront(): returns and

removes the element at the
front of the list

– insertBack(e): inserts an
element on the back of the list

• Main queue operations:
• enqueue(e): inserts an element at

the end of the queue

• dequeue(): removes and returns
the element at the front of the
queue

• front(): returns the element at the
front without removing it

• size(): returns the number of
elements stored

• isEmpty(): returns a Boolean
value indicating if there are no
elements in the queue

size() and isEmpty() would require
the addition of a counter that increments
each time enqueue() is called and
decrements when dequeue() is called

Solution Provided

Queue as a Singly Linked List
• CONCLUSION:

• We can implement a queue with a singly linked list
– The front element is stored at the head of the list
– The rear element is stored at the tail of the list

• The space used is O(n)
• Each operation of the Queue ADT takes O(1) time

• enqueue, dequeue, front, size, isEmpty each take O(1) time

• NOTE: we do not have the limitation of the static array

based implementation on the size of the stack because
the size of the linked list is not fixed,

• i.e. the queue is NEVER full.

Solution Provided

	Graded ICA205�Qlist
	Queue and Singly Linked List
	Graded In-Class Exercise: Qlist
	Queue as a Singly Linked List
	Queue and Singly Linked List
	Queue and Singly Linked List
	Queue and Singly Linked List
	Queue and Singly Linked List
	Queue and Singly Linked List
	Queue and Singly Linked List
	Queue as a Singly Linked List

