Image Processing

Brent M. Dingle, Ph.D. Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout 2015

Lecture Objectives

- Previously
 - What a Digital Image is
 - Acquisition of Digital Images
 - Human Perception of Digital Images
 - Digital Representation of Images
 - Various HTML5 and JavaScript Code
 - Pixel manipulation
 - Image Loading
 - Filtering

Today

- Image Interpolation
 - Sub-Sampling
 - Aliasing
 - Gaussian Blur Fix
 - Up-Sampling
 - Interpolation
- Examples of Using Interpolation

Lecture Objectives

- Previously
 - What a Digital Image is
 - Acquisition of Digital Images
 - Human Perception of Digital Images
 - Digital Representation of Images
 - Various HTML5 and JavaScript Code
 - Pixel manipulation
 - Image Loading
 - Filtering

• Today

- Image Interpolation
 - Sub-Sampling
 - Aliasing
 - Pre-Filtering
 - Up-Sampling
 - Interpolation
- Examples of Using Interpolation

Image

This image is too big to fit on the screen. How can we generate a half-sized version?

Image sub-sampling Why do these reduced sizes look bad?

scaled to ½ size

scaled to ¼ size (2x zoom)

scaled to 1/8 size (4x zoom)

Image sub-sampling

What happened here?

Even worse for synthetic images

And what happened here?

Aliasing

- Occurs when your sampling rate is not high enough to capture the amount of detail in your image
 - Can give you the **wrong signal/image**—an *alias*
- To do sampling right, need to understand the structure of your signal/image
 - Hello Fourier!
- To avoid aliasing:
 - sampling rate \geq 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the **Nyquist rate**

Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

(See <u>http://www.michaelbach.de/ot/mot_wagonWheel/index.html</u>) Sou

Wagon Wheel Variations

Which way is the train going?

Which way does the middle dancer spin? Focus on the left – middle matches Focus on the right – middle matches

Nyquist limit – 2D example

Aliasing

- When downsampling by a factor of two
 - Original image has frequencies that are too high

• How can we fix this?

Gaussian pre-filtering

G 1/8

G 1/4

Gaussian 1/2

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/8

• Solution: filter the image, then subsample

Compare with...

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Gaussian prefiltering

 Solution: filter the image, then subsample

Gaussian pyramids [Burt and Adelson, 1983]

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer graphics, vision, imaging...

Gaussian pyramids [Burt and Adelson, 1983]

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

How much space does a Gaussian pyramid take compared to the original image?

Gaussian Pyramid

Questions so far?

- Questions on Sub-Sampling
 - Aliasing?
 - Gaussian pre-filter?

Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach: repeat each row and column 10 times
- ("Nearest neighbor interpolation")

Recall how a digital image is formed

 $F[x, y] = quantize\{f(xd, yd)\}$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Recall how a digital image is formed

 $F[x, y] = quantize\{f(xd, yd)\}$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

d = 1 in this example

- What if we don't know *f* ?
 - Guess an approximation: \tilde{f}
 - Can be done in a principled way: filtering
 - Convert *F* to a continuous function:

 $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise

• Reconstruct by convolution with a reconstruction filter, h

$$\tilde{f} = h * f_F$$

Slide from: Noah Snavely, 2012, Cornell

Adapted from: S. Seitz

"Ideal" reconstruction

Source: B. Curless

Reconstruction filters

• What does the 2D version of this hat function look like?

linear interpolation

bilinear interpolation

3x3 Matrix for 2D tent filter might look like:

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Reconstruction filters

• What does the 2D version of this hat function look like?

More information, start at:

<u>http://en.wikipedia.org/wiki/Bilinear_interpolation</u>

Better filters give better resampled images

• Bicubic is common choice

 $(12 - 9B - 6C)|\mathbf{x}|^3 + (-18 + 12B + 6C)|\mathbf{x}|^2 + (6 - 2B)$ $((-B - 6C)|\mathbf{x}|^3 + (6B + 30C)|\mathbf{x}|^2 + (-12B - 48C)|\mathbf{x}| + (8B + 24C)$

|x| < 1 $1 \le |x| < 2$ otherwise

Original image: 🌉 x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Also used for *resampling*

Examples of Interpolation Usage

- Image Bayer De-mosaicking
- Image Error Correction/Fill
- Image Reconstruction/Inpainting
- Merging/Mosaicking/Panoramic Splicing

Demosaicing Image Example

Ad-hoc CFA Interpolation

Advanced CFA Interpolation

Error Correction/Fill

damaged

interpolated

Image Inpainting/Restoration

Image Mosaicing/Merging

Summary: Image Interpolation

- Image Interpolation
 - Fundamental tool in digital processing of images
 - bridges the continuous world and the discrete world

– Wide range of application use

• Separate an image into its color planes (RGB)

• Reduce panes to Bayer Pattern Equivalent

• Reduce panes to Bayer Pattern Equivalent

• Reduce panes to Bayer Pattern Equivalent

• Interpolate each pane and re-composite

Questions?

- Beyond D2L
 - Examples and information can be found online at:
 - http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

- Much of the content derived/based on slides for use with the book:
 - Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
 - Donald House, Texas A&M University, 1999
 - Bernd Girod, Stanford University, 2007
 - Shreekanth Mandayam, Rowan University, 2009
 - Noah Snavely, Cornell University, 2012
 - Igor Aizenberg, TAMUT, 2013
 - Xin Li, WVU, 2014
 - George Wolberg, City College of New York, 2015
 - Yao Wang and Zhu Liu, NYU-Poly, 2015
 - Sinisa Todorovic, Oregon State, 2015

