Image Warping o m

(Geometric Transforms)

Image Processing

Lecture Objectives

e Previously

— Image Interpolation

 Today

— Image Wa rping (Geometric Transforms)

Outline

e Wa rping (Geometric Transforms)
— General Image Warps
— Forward and Inverse Mapping

Apples of All Shapes and Sizes

S

Affine

lmage Warps

Mapping and functions

—

Input Warped
Image [X(u,v), ¥(u,v)] Image
fu.;rvj) {xcr}rgl
-
A
v ¥
P e
u X
B = AL, D)
X() and Y() map (u, v) to (x, -
OandY)map (vt (oY) vy)

. . T X(u,v)
In vector notation: = . -

Forward Mapping: [X(), Y()]

e |If the image was continuous
and the forward map: [X(), Y()]

— Then for each old image pixel (u, v)

we can paint new pixel (x, y)

using the same color

Input
Image

1

(ayrvy)

is relatively smooth (no discontinuities)

(X0r¥0)

Warped
Image

Forward Map

Digital image are NOT continuous
— They consist of a finite number of samples = pixels

— Allowing the following algorithm to perform a
mapping

for(v = 0; v < in_height; v++)
for(u = 0; u < in_width; u++)
[In [u] [vﬂ;

Out [round (X (u,v))] [round(Y(u,v))] =

\ J \ J
| | original image’s

(x , vy) pixel color

at (u, v)

Problem with Forward Map

e With loss of “continuous/infinite” points

— one-to-on mapping cannot happen
— forward map leaves holes and folds

In

[X(), Y()I

-

scaled down
on this side

? = hole in new image
O= fold in new image

13

11,

21 4

31

scaled up
on this side

Searching for a Solution

Input Pixel Output Pixels

Could try weighting average of some kind
to mix colors, to fill holes and fix folds...

Still Searching...

e If map is to curvy lines/edges that averaging
becomes more difficult

— not very “pixel-to-pixe

|”

[X(), Y()]

Input Pixel Output Pixels

Must be an easier way...

Inverse Map Solution

e |nvert the problem

— Look at each output pixel and determine what input
pixel(s) map to it
e instead of sending each input pixel to an output pixel

1 41
47| 13| 13 | 13
VO, VO L
1 1| 12| 12| 12|13 | 1

’- 21 | 21| 22| 22| 22| 23 | 23

31 31| 22 22| 22| 23 2]

31 32 32 33 3
h-ﬂ‘"""-.__
32 Tea] zf

In Out

No holes or folds !!!

Inverse Map: [U(), V()]

e Recall the forward map: r = X(u,v),
y =Y (u,v).

e |nvert the mapping functions X() and Y()

]* or in matrix form: u _ r("-' y.)
), v | | Vizy)

u (r.y
v T,y

U
V (

Inverse Mapping Algorithm

for(y = 0; y < out_height; y++)
for(x = 0; x < out_width; x++)
Out[x] [y] = In[round(U(x,y))] [round(V(x,y))];

\ J | |
| |
(u , v)
1 13
A7 13| 13 13
—
11 12 13 (VO VO 1 --'I"f#rlz 12| 12| 13 13

21| 22 | 23 ‘- 21 | 21| 22 | 22| 22| 23 | 23

31 32 33 31 31| 22 22| 22| 23 2]
31 "-e.a._“_ﬁsﬁz: 32 | 33 3
32 "'-s-a.____ia

In Out

The inverse map provides a complete covering

Forward vs Inverse Maps

Forward Map:

for(v = 0; v < in_height; v++)
for(u = 0; u < in _width; u++)
Uut[{ound(X(u,v))][round(Y(u,v))] = In[u] [v];

J | J
| |
(x) y)

Inverse Map:
for(y = 0; y < out_height; y++)
for(x = 0; x < out_width; x++)
Out[x] [y] = In[round(U(x,y))] [round(V(x,y))];
\ J | J
| |

(u : v)

Inverse Supports Clipping Too!

Warping and clipping
all together, same time

/-— no sample,

¢

clip mask

~—— sample

Inverse Supports Clipping Too!

/—— no sample,

p| clip mask

~—— sample

A forward map would map this pixel to the new image
and require it to be cleared off later

Affine Map

A geometric transformation that maps
points and parallel lines
to points and parallel lines

General form of an affine map:

r | | ajqu—+aqav + a3
1Y (1911 + 99V + (193

X(u,v) = ajqu + a1ov + a3

}:['U* V) = a9 + a9 + a93

a; are coefficient constants

Affine Maps: Matrix Form

i

11U + A192V + 13
191U + A99V + 193

X(u,v) = ayqu + a12v + ays.

~

_ Y (u,v) = ag1u + agv + ass)

in matrix form looks like:

(111
(191

(119
(199

(113
(199

u

U

What about Infinity?

e Euclidean/Cartesian space cannot handle points at infinity
— cannot describe projective space

The railroad tracks become narrower
as they meet the horizon
—> parallel lines intersect at infinity

Projective space allows for this effect

AND

It is easy to transform points
to and from Cartesian space
into and out of Projective space

Image from: http://www.songho.ca/math/homogeneous/homogeneous.html

Homogeneous Coordinate System

* Every (cartesian) point g

has an identical third coordinate

L E)
(z,y,w) & (w, "
Homogeneous Carteslan

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique
however,
Conversion from Homogeneous coordinates to Cartesian is NOT unique

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html

Homogeneous Coordinate System

* Every (cartesian) point
has an identical third coordinate

(u,v, 1) = (x,y)

Homogeneous Carteslan
Affine
will focus on the plane defined by
w=1

Image will be (u, v, 1)
with u and v the pixel coordinates

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique
however,
Conversion from Homogeneous coordinates to Cartesian is NOT unique

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html

Matrix Translation

e Given homogeneous coordinates (u, v, 1)
— Find Cartesian coordinates (x, y)

B [11 @192 a3 1 [w
Y — | a21 a2 a3 v
| 0 0 | 1

Explicitly, x then would be calculated as:

T =0aqi1u + a120 +— aq13 = [11 a12 Q13]

AGAIN:
Conversion from Homogeneous coordinates to Cartesian is NOT unique
coeffs a; will describe how we want to warp an image,
Example: a,;is a translation distance for x

Points to Remember

e Homogeneous Coordinates

— allow affine transformations
to be easily represented
by matrix multiplications

o Affine Maps

— always have an inverse

— can be represented in matrix form
(via homogeneous coords)

Scale: an affine map transform

e scale(x,y) =(a,u, a,Vv)

Scale

a1 u a1 0 Ojru
= azzv — O azz O:| [U]
0 o 111

A

1 ﬁ-— a,,

Y

Ha'_'_'hl

Translate: an affine map transform

e translate (x,y)=(u+ay;, v+a,;)

X U+ ags 1 0 aqz]u
)I] = |v + Ar3 | = [0 1 a23] [v]
1 1 0 0 111
(313, @23)

(0, 0)

Shear: an affine map transform x

e shear(x,y)=(u+ap,v, a,u+v)

Skew

X U+ aq v 1 ap O]ru
Yyl =lajut+v|= lam 1 O] [v]
1 1 0o o0 1t

Rotate: an affine map transform <>

e rotate(x,y)=(u cos@ —v sinf, u sinf +vcosfh) ==

X U cosf —v sinf cos@ —sin@ O0]ru
YI=lusind +vcosf@ | =|sinf cosd O [v]
1 1 0 0 1111
| Y
(0,0) (0,0)

NOTE: rotation is around (0,0)... which might not achieve the expected result

e Ris arotation

e Sisascale

e Tis atranslation

First do a rotation, followed by a scale, then a translation

Denote this as:

By associative property can also denote it as:

T(S(R

((T'S)R)

i

1

1

i

)

Hr
T4

JH

1

{

ne
i

Hr
3

R

Composing Affine Warps

(!

—

Composing Affine Warps

M =TSR,

1" Y ik
MI!I v | =1 7"
1 1

e All translations, scales, and rotations can be done using one matrix

* Yields ONE SIMPLE representation

— Important: order of operations when creating the matrix does matter, be careful
— i.e. operations are NOT commutative

Example

(0,1) (1,1)
(3/4,3/4)
1/2 Scale (1/2,1/2) translate
— _|
S
(1/4,1/4)
(0,0 (1,0) (0,0)
S 1/2 0 1/4 7
S=1| 0 1/2 1/4
00 1
1 0 0 7
7's=1]0 1 0
L0 0 1

1S =

e Whatis ST ?

ST =

1/2

0
0

I
0
0

0
I
0

M=TS5 =

0 O
1/2 OH
0 1

1/4 7
1/4
1

1 0 1/4
0 1 1/4

0

[1/2

0
0

0

1

0
0
0
1/2
0

- |

1/4]
1/4

0

I

1/2

0
0

) -
1/2 0
0

1

0
1/2
0

T and S Commutative ?
" 1/2

1/8
1/8‘
1

NOT commutative !

Summary: Warps

 Warps are cool

e Homogeneous coordinates are cool

— Can represent affine warps in one “matrix way”

e Affine warps are awesome

— Can combine warps into one matrix
— BUT order matters

Questions?
Beyond D2L

— Examples and information
can be found online at:

e http://docdingle.com/teaching/cs.html

e Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

e Much of the content derived/based on slides for use with the book:
— Digital Image Processing, Gonzalez and Woods

 Some layout and presentation style derived/based on presentations by
— Donald House, Texas A&M University, 1999
— Bernd Girod, Stanford University, 2007
— Shreekanth Mandayam, Rowan University, 2009
— lgor Aizenberg, TAMUT, 2013
— Xin Li, WVU, 2014
— George Wolberg, City College of New York, 2015
— Yao Wang and Zhu Liu, NYU-Poly, 2015
— Sinisa Todorovic, Oregon State, 2015

	Image Warping �(Geometric Transforms)
	Lecture Objectives
	Outline
	Apples of All Shapes and Sizes
	Image Warps
	Forward Mapping: [X(), Y()]
	Forward Map
	Problem with Forward Map
	Searching for a Solution
	Still Searching…
	Inverse Map Solution
	Inverse Map: [U(), V()]
	Inverse Mapping Algorithm
	Forward vs Inverse Maps
	Inverse Supports Clipping Too!
	Inverse Supports Clipping Too!
	Affine Map
	Affine Maps: Matrix Form
	What about Infinity?
	Homogeneous Coordinate System
	Homogeneous Coordinate System
	Matrix Translation
	Points to Remember
	Scale: an affine map transform
	Translate: an affine map transform
	Shear: an affine map transform
	Rotate: an affine map transform
	Composing Affine Warps
	Composing Affine Warps
	Example
	T and S Commutative ?
	Summary: Warps
	Questions?
	Extra Reference Stuff Follows
	Credits

