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Image Processing 

Image Warping  
(Geometric Transforms) 

Material in this presentation is largely based on/derived from  
presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University 



Lecture Objectives 

• Previously 
– Image Interpolation 

 
• Today 

– Image Warping (Geometric Transforms) 

 



Outline 

• Warping (Geometric Transforms) 

– General Image Warps 
– Forward and Inverse Mapping 

 



Apples of All Shapes and Sizes 



Image Warps 
• Mapping and functions 

X() and Y() map (u, v) to (x, y) 

in vector notation: 



Forward Mapping: [ X(), Y() ] 
• If the image was continuous 

    and the forward map: [X(), Y()]  
                   is relatively smooth (no discontinuities) 

 
– Then for each old image pixel (u, v)  

we can paint new pixel (x, y)  
using the same color 



Forward Map 
• Digital image are NOT continuous 

– They consist of a finite number of samples = pixels 
– Allowing the following algorithm to perform a 

mapping 

(   x                ,                 y   ) 
original image’s 
pixel color 
at (u, v) 



Problem with Forward Map 
• With loss of “continuous/infinite” points 

– one-to-on mapping cannot happen 
– forward map leaves holes and folds 

? = hole in new image 
    = fold in new image 

scaled down 
on this side 

scaled up 
on this side 



Searching for a Solution 

Could try weighting average of some kind  
   to mix colors, to fill holes and fix folds… 

[ X(), Y() ] 



Still Searching… 
• If map is to curvy lines/edges that averaging 

becomes more difficult 
– not very “pixel-to-pixel” 

Must be an easier way… 

[ X(), Y() ] 



Inverse Map Solution 
• Invert the problem 

– Look at each output pixel and determine what input 
pixel(s) map to it 

• instead of sending each input pixel to an output pixel 

No holes or folds !!! 



Inverse Map: [ U(), V() ] 

• Recall the forward map: 
 
 

• Invert the mapping functions X() and Y() 

or in matrix form: 



Inverse Mapping Algorithm 

(   u                ,                 v   ) 

The inverse map provides a complete covering 



Forward vs Inverse Maps 

(   u                ,                 v   ) 

Inverse Map: 

(   x                ,                 y   ) 

Forward Map: 



Inverse Supports Clipping Too! 
Warping and clipping 
   all together, same time 



Inverse Supports Clipping Too! 

A forward map would map this pixel to the new image  
and require it to be cleared off later 



Affine Map 
• A geometric transformation that maps  

points and parallel lines  
to points and parallel lines 
 

• General form of an affine map: 

aij are coefficient constants 



Affine Maps: Matrix Form 

in matrix form looks like: 



What about Infinity? 
• Euclidean/Cartesian space cannot handle points at infinity 
 cannot describe projective space 
 

Image from: http://www.songho.ca/math/homogeneous/homogeneous.html 

The railroad tracks become narrower  
as they meet the horizon 
 parallel lines intersect at infinity 

Projective space allows for this effect 
 
AND 
 
It is easy to transform points 
to and from Cartesian space 
into and out of Projective space 
… 



Homogeneous Coordinate System 

• Every (Cartesian) point 
has an identical third coordinate 

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique 
            however, 
            Conversion from Homogeneous coordinates to Cartesian is NOT unique 

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html 



Homogeneous Coordinate System 

• Every (Cartesian) point 
has an identical third coordinate 

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique 
            however, 
            Conversion from Homogeneous coordinates to Cartesian is NOT unique 

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html 

Affine 
will focus on the plane defined by  
w = 1 

 ( u, v, 1)  ( x, y ) 

Image will be (u, v, 1)  
with u and v the pixel coordinates 



Matrix Translation 
• Given homogeneous coordinates (u, v, 1) 

– Find Cartesian coordinates (x, y) 

Explicitly, x then would be calculated as: 

AGAIN: 
            Conversion from Homogeneous coordinates to Cartesian is NOT unique 
            coeffs aij will describe how we want to warp an image,  
 Example: a13 is a translation distance for x 



Points to Remember 

• Homogeneous Coordinates 
– allow affine transformations 

to be easily represented 
by matrix multiplications 
 

• Affine Maps 
– always have an inverse 
– can be represented in matrix form  

(via homogeneous coords) 



Scale: an affine map transform 

𝑥
𝑦
1

=
𝑎11𝑢
𝑎22𝑣

1
=

𝑎11 0 0
0 𝑎22 0
0 0 1

𝑢
𝑣
1

 

• scale(x, y) = ( a11u,  a22v ) 



Translate: an affine map transform 

• translate (x, y) = ( u + a13,  v + a23 ) 

𝑥
𝑦
1

=
𝑢 + 𝑎13
𝑣 + 𝑎23

1
=

1 0 𝑎13
0 1 𝑎23
0 0 1

𝑢
𝑣
1

 

(0, 0) 

(a13, a23) 



Shear: an affine map transform 

• shear (x, y) = ( u + a12v,   a21u + v) 

𝑥
𝑦
1

=
𝑢 + 𝑎12𝑣
𝑎21𝑢 + 𝑣

1
=

1 𝑎12 0
𝑎21 1 0

0 0 1

𝑢
𝑣
1

 

a12v 

a21u 



Rotate: an affine map transform 

• rotate (x, y) = (𝑢 cos 𝜃 − 𝑣 sin𝜃, 𝑢 sin𝜃 + 𝑣 cos 𝜃) 

𝑥
𝑦
1

=
𝑢 cos 𝜃 − 𝑣 sin𝜃
𝑢 sin𝜃 + 𝑣 cos 𝜃

1
=

cos 𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0

0 0 1

𝑢
𝑣
1

 

𝜃 

NOTE: rotation is around (0,0)… which might not achieve the expected result 

(0, 0) (0, 0) 



Composing Affine Warps 

• R is a rotation 
• S is a scale 
• T is a translation 

First do a rotation, followed by a scale, then a translation 
Denote this as: 

By associative property can also denote it as: 



Composing Affine Warps 

• All translations, scales, and rotations can be done using one matrix 
 

• Yields ONE SIMPLE representation 
– Important: order of operations when creating the matrix does matter, be careful 
– i.e. operations are NOT commutative 



Example 



T and S Commutative ? 

• What is ST ? 

𝑆𝑆 =
1/2 0 0

0 1/2 0
0 0 1

1 0 1/4
0 1 1/4
0 0 1

= 
1/2 0 1/8

0 1/2 1/8
0 0 1

 

NOT commutative ! 



Summary: Warps 
• Warps are cool 

 
• Homogeneous coordinates are cool 

– Can represent affine warps in one “matrix way” 

 
• Affine warps are awesome 

– Can combine warps into one matrix 
– BUT order matters 



Questions? 
• Beyond D2L 

– Examples and information 
can be found online at: 

• http://docdingle.com/teaching/cs.html 
 

 
 
 
 

• Continue to more stuff as needed 



Extra Reference Stuff Follows 



Credits 
• Much of the content derived/based on slides for use with the book: 

– Digital Image Processing, Gonzalez and Woods 
 

• Some layout and presentation style derived/based on presentations by 
– Donald House, Texas A&M University, 1999 
– Bernd Girod, Stanford University, 2007 
– Shreekanth Mandayam, Rowan University, 2009 
– Igor Aizenberg, TAMUT, 2013 
– Xin Li, WVU, 2014 
– George Wolberg, City College of New York, 2015 
– Yao Wang and Zhu Liu, NYU-Poly, 2015 
– Sinisa Todorovic, Oregon State, 2015 
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