
Brent M. Dingle, Ph.D. 2015
Game Design and Development Program
Mathematics, Statistics and Computer Science
University of Wisconsin - Stout

Image Processing

Image Warping
(Geometric Transforms)

Material in this presentation is largely based on/derived from
presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University

Lecture Objectives

• Previously
– Image Interpolation

• Today

– Image Warping (Geometric Transforms)

Outline

• Warping (Geometric Transforms)

– General Image Warps
– Forward and Inverse Mapping

Apples of All Shapes and Sizes

Image Warps
• Mapping and functions

X() and Y() map (u, v) to (x, y)

in vector notation:

Forward Mapping: [X(), Y()]
• If the image was continuous

 and the forward map: [X(), Y()]
 is relatively smooth (no discontinuities)

– Then for each old image pixel (u, v)

we can paint new pixel (x, y)
using the same color

Forward Map
• Digital image are NOT continuous

– They consist of a finite number of samples = pixels
– Allowing the following algorithm to perform a

mapping

(x , y)
original image’s
pixel color
at (u, v)

Problem with Forward Map
• With loss of “continuous/infinite” points

– one-to-on mapping cannot happen
– forward map leaves holes and folds

? = hole in new image
 = fold in new image

scaled down
on this side

scaled up
on this side

Searching for a Solution

Could try weighting average of some kind
 to mix colors, to fill holes and fix folds…

[X(), Y()]

Still Searching…
• If map is to curvy lines/edges that averaging

becomes more difficult
– not very “pixel-to-pixel”

Must be an easier way…

[X(), Y()]

Inverse Map Solution
• Invert the problem

– Look at each output pixel and determine what input
pixel(s) map to it

• instead of sending each input pixel to an output pixel

No holes or folds !!!

Inverse Map: [U(), V()]

• Recall the forward map:

• Invert the mapping functions X() and Y()

or in matrix form:

Inverse Mapping Algorithm

(u , v)

The inverse map provides a complete covering

Forward vs Inverse Maps

(u , v)

Inverse Map:

(x , y)

Forward Map:

Inverse Supports Clipping Too!
Warping and clipping
 all together, same time

Inverse Supports Clipping Too!

A forward map would map this pixel to the new image
and require it to be cleared off later

Affine Map
• A geometric transformation that maps

points and parallel lines
to points and parallel lines

• General form of an affine map:

aij are coefficient constants

Affine Maps: Matrix Form

in matrix form looks like:

What about Infinity?
• Euclidean/Cartesian space cannot handle points at infinity
 cannot describe projective space

Image from: http://www.songho.ca/math/homogeneous/homogeneous.html

The railroad tracks become narrower
as they meet the horizon
 parallel lines intersect at infinity

Projective space allows for this effect

AND

It is easy to transform points
to and from Cartesian space
into and out of Projective space
…

Homogeneous Coordinate System

• Every (Cartesian) point
has an identical third coordinate

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique
 however,
 Conversion from Homogeneous coordinates to Cartesian is NOT unique

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html

Homogeneous Coordinate System

• Every (Cartesian) point
has an identical third coordinate

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique
 however,
 Conversion from Homogeneous coordinates to Cartesian is NOT unique

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html

Affine
will focus on the plane defined by
w = 1

 (u, v, 1) (x, y)

Image will be (u, v, 1)
with u and v the pixel coordinates

Matrix Translation
• Given homogeneous coordinates (u, v, 1)

– Find Cartesian coordinates (x, y)

Explicitly, x then would be calculated as:

AGAIN:
 Conversion from Homogeneous coordinates to Cartesian is NOT unique
 coeffs aij will describe how we want to warp an image,
 Example: a13 is a translation distance for x

Points to Remember

• Homogeneous Coordinates
– allow affine transformations

to be easily represented
by matrix multiplications

• Affine Maps
– always have an inverse
– can be represented in matrix form

(via homogeneous coords)

Scale: an affine map transform

𝑥
𝑦
1

=
𝑎11𝑢
𝑎22𝑣

1
=

𝑎11 0 0
0 𝑎22 0
0 0 1

𝑢
𝑣
1

• scale(x, y) = (a11u, a22v)

Translate: an affine map transform

• translate (x, y) = (u + a13, v + a23)

𝑥
𝑦
1

=
𝑢 + 𝑎13
𝑣 + 𝑎23

1
=

1 0 𝑎13
0 1 𝑎23
0 0 1

𝑢
𝑣
1

(0, 0)

(a13, a23)

Shear: an affine map transform

• shear (x, y) = (u + a12v, a21u + v)

𝑥
𝑦
1

=
𝑢 + 𝑎12𝑣
𝑎21𝑢 + 𝑣

1
=

1 𝑎12 0
𝑎21 1 0

0 0 1

𝑢
𝑣
1

a12v

a21u

Rotate: an affine map transform

• rotate (x, y) = (𝑢 cos 𝜃 − 𝑣 sin𝜃, 𝑢 sin𝜃 + 𝑣 cos 𝜃)

𝑥
𝑦
1

=
𝑢 cos 𝜃 − 𝑣 sin𝜃
𝑢 sin𝜃 + 𝑣 cos 𝜃

1
=

cos 𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0

0 0 1

𝑢
𝑣
1

𝜃

NOTE: rotation is around (0,0)… which might not achieve the expected result

(0, 0) (0, 0)

Composing Affine Warps

• R is a rotation
• S is a scale
• T is a translation

First do a rotation, followed by a scale, then a translation
Denote this as:

By associative property can also denote it as:

Composing Affine Warps

• All translations, scales, and rotations can be done using one matrix

• Yields ONE SIMPLE representation
– Important: order of operations when creating the matrix does matter, be careful
– i.e. operations are NOT commutative

Example

T and S Commutative ?

• What is ST ?

𝑆𝑆 =
1/2 0 0

0 1/2 0
0 0 1

1 0 1/4
0 1 1/4
0 0 1

=
1/2 0 1/8

0 1/2 1/8
0 0 1

NOT commutative !

Summary: Warps
• Warps are cool

• Homogeneous coordinates are cool

– Can represent affine warps in one “matrix way”

• Affine warps are awesome

– Can combine warps into one matrix
– BUT order matters

Questions?
• Beyond D2L

– Examples and information
can be found online at:

• http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits
• Much of the content derived/based on slides for use with the book:

– Digital Image Processing, Gonzalez and Woods

• Some layout and presentation style derived/based on presentations by
– Donald House, Texas A&M University, 1999
– Bernd Girod, Stanford University, 2007
– Shreekanth Mandayam, Rowan University, 2009
– Igor Aizenberg, TAMUT, 2013
– Xin Li, WVU, 2014
– George Wolberg, City College of New York, 2015
– Yao Wang and Zhu Liu, NYU-Poly, 2015
– Sinisa Todorovic, Oregon State, 2015

	Image Warping �(Geometric Transforms)
	Lecture Objectives
	Outline
	Apples of All Shapes and Sizes
	Image Warps
	Forward Mapping: [X(), Y()]
	Forward Map
	Problem with Forward Map
	Searching for a Solution
	Still Searching…
	Inverse Map Solution
	Inverse Map: [U(), V()]
	Inverse Mapping Algorithm
	Forward vs Inverse Maps
	Inverse Supports Clipping Too!
	Inverse Supports Clipping Too!
	Affine Map
	Affine Maps: Matrix Form
	What about Infinity?
	Homogeneous Coordinate System
	Homogeneous Coordinate System
	Matrix Translation
	Points to Remember
	Scale: an affine map transform
	Translate: an affine map transform
	Shear: an affine map transform
	Rotate: an affine map transform
	Composing Affine Warps
	Composing Affine Warps
	Example
	T and S Commutative ?
	Summary: Warps
	Questions?
	Extra Reference Stuff Follows
	Credits

