
Brent M. Dingle, Ph.D. 2015
Game Design and Development Program
Mathematics, Statistics and Computer Science
University of Wisconsin - Stout

Image Processing

Image Warping
(Geometric Transforms)

Material in this presentation is largely based on/derived from
presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University

Lecture Objectives

• Previously
– Image Interpolation

• Today

– Image Warping (Geometric Transforms)

Outline

• Warping (Geometric Transforms)

– General Image Warps
– Forward and Inverse Mapping

Apples of All Shapes and Sizes

Image Warps
• Mapping and functions

X() and Y() map (u, v) to (x, y)

in vector notation:

Forward Mapping: [X(), Y()]
• If the image was continuous

 and the forward map: [X(), Y()]
 is relatively smooth (no discontinuities)

– Then for each old image pixel (u, v)

we can paint new pixel (x, y)
using the same color

Forward Map
• Digital image are NOT continuous

– They consist of a finite number of samples = pixels
– Allowing the following algorithm to perform a

mapping

(x , y)
original image’s
pixel color
at (u, v)

Problem with Forward Map
• With loss of “continuous/infinite” points

– one-to-on mapping cannot happen
– forward map leaves holes and folds

? = hole in new image
 = fold in new image

scaled down
on this side

scaled up
on this side

Searching for a Solution

Could try weighting average of some kind
 to mix colors, to fill holes and fix folds…

[X(), Y()]

Still Searching…
• If map is to curvy lines/edges that averaging

becomes more difficult
– not very “pixel-to-pixel”

Must be an easier way…

[X(), Y()]

Inverse Map Solution
• Invert the problem

– Look at each output pixel and determine what input
pixel(s) map to it

• instead of sending each input pixel to an output pixel

No holes or folds !!!

Inverse Map: [U(), V()]

• Recall the forward map:

• Invert the mapping functions X() and Y()

or in matrix form:

Inverse Mapping Algorithm

(u , v)

The inverse map provides a complete covering

Forward vs Inverse Maps

(u , v)

Inverse Map:

(x , y)

Forward Map:

Inverse Supports Clipping Too!
Warping and clipping
 all together, same time

Inverse Supports Clipping Too!

A forward map would map this pixel to the new image
and require it to be cleared off later

Affine Map
• A geometric transformation that maps

points and parallel lines
to points and parallel lines

• General form of an affine map:

aij are coefficient constants

Affine Maps: Matrix Form

in matrix form looks like:

What about Infinity?
• Euclidean/Cartesian space cannot handle points at infinity
 cannot describe projective space

Image from: http://www.songho.ca/math/homogeneous/homogeneous.html

The railroad tracks become narrower
as they meet the horizon
 parallel lines intersect at infinity

Projective space allows for this effect

AND

It is easy to transform points
to and from Cartesian space
into and out of Projective space
…

Homogeneous Coordinate System

• Every (Cartesian) point
has an identical third coordinate

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique
 however,
 Conversion from Homogeneous coordinates to Cartesian is NOT unique

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html

Homogeneous Coordinate System

• Every (Cartesian) point
has an identical third coordinate

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique
 however,
 Conversion from Homogeneous coordinates to Cartesian is NOT unique

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html

Affine
will focus on the plane defined by
w = 1

 (u, v, 1) (x, y)

Image will be (u, v, 1)
with u and v the pixel coordinates

Matrix Translation
• Given homogeneous coordinates (u, v, 1)

– Find Cartesian coordinates (x, y)

Explicitly, x then would be calculated as:

AGAIN:
 Conversion from Homogeneous coordinates to Cartesian is NOT unique
 coeffs aij will describe how we want to warp an image,
 Example: a13 is a translation distance for x

Points to Remember

• Homogeneous Coordinates
– allow affine transformations

to be easily represented
by matrix multiplications

• Affine Maps
– always have an inverse
– can be represented in matrix form

(via homogeneous coords)

Scale: an affine map transform

𝑥
𝑦
1

=
𝑎11𝑢
𝑎22𝑣

1
=

𝑎11 0 0
0 𝑎22 0
0 0 1

𝑢
𝑣
1

• scale(x, y) = (a11u, a22v)

Translate: an affine map transform

• translate (x, y) = (u + a13, v + a23)

𝑥
𝑦
1

=
𝑢 + 𝑎13
𝑣 + 𝑎23

1
=

1 0 𝑎13
0 1 𝑎23
0 0 1

𝑢
𝑣
1

(0, 0)

(a13, a23)

Shear: an affine map transform

• shear (x, y) = (u + a12v, a21u + v)

𝑥
𝑦
1

=
𝑢 + 𝑎12𝑣
𝑎21𝑢 + 𝑣

1
=

1 𝑎12 0
𝑎21 1 0

0 0 1

𝑢
𝑣
1

a12v

a21u

Rotate: an affine map transform

• rotate (x, y) = (𝑢 cos 𝜃 − 𝑣 sin𝜃, 𝑢 sin𝜃 + 𝑣 cos 𝜃)

𝑥
𝑦
1

=
𝑢 cos 𝜃 − 𝑣 sin𝜃
𝑢 sin𝜃 + 𝑣 cos 𝜃

1
=

cos 𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0

0 0 1

𝑢
𝑣
1

𝜃

NOTE: rotation is around (0,0)… which might not achieve the expected result

(0, 0) (0, 0)

Composing Affine Warps

• R is a rotation
• S is a scale
• T is a translation

First do a rotation, followed by a scale, then a translation
Denote this as:

By associative property can also denote it as:

Composing Affine Warps

• All translations, scales, and rotations can be done using one matrix

• Yields ONE SIMPLE representation
– Important: order of operations when creating the matrix does matter, be careful
– i.e. operations are NOT commutative

Example

T and S Commutative ?

• What is ST ?

𝑆𝑆 =
1/2 0 0

0 1/2 0
0 0 1

1 0 1/4
0 1 1/4
0 0 1

=
1/2 0 1/8

0 1/2 1/8
0 0 1

NOT commutative !

Summary: Warps
• Warps are cool

• Homogeneous coordinates are cool

– Can represent affine warps in one “matrix way”

• Affine warps are awesome

– Can combine warps into one matrix
– BUT order matters

Questions?
• Beyond D2L

– Examples and information
can be found online at:

• http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits
• Much of the content derived/based on slides for use with the book:

– Digital Image Processing, Gonzalez and Woods

• Some layout and presentation style derived/based on presentations by
– Donald House, Texas A&M University, 1999
– Bernd Girod, Stanford University, 2007
– Shreekanth Mandayam, Rowan University, 2009
– Igor Aizenberg, TAMUT, 2013
– Xin Li, WVU, 2014
– George Wolberg, City College of New York, 2015
– Yao Wang and Zhu Liu, NYU-Poly, 2015
– Sinisa Todorovic, Oregon State, 2015

	Image Warping �(Geometric Transforms)
	Lecture Objectives
	Outline
	Apples of All Shapes and Sizes
	Image Warps
	Forward Mapping: [X(), Y()]
	Forward Map
	Problem with Forward Map
	Searching for a Solution
	Still Searching…
	Inverse Map Solution
	Inverse Map: [U(), V()]
	Inverse Mapping Algorithm
	Forward vs Inverse Maps
	Inverse Supports Clipping Too!
	Inverse Supports Clipping Too!
	Affine Map
	Affine Maps: Matrix Form
	What about Infinity?
	Homogeneous Coordinate System
	Homogeneous Coordinate System
	Matrix Translation
	Points to Remember
	Scale: an affine map transform
	Translate: an affine map transform
	Shear: an affine map transform
	Rotate: an affine map transform
	Composing Affine Warps
	Composing Affine Warps
	Example
	T and S Commutative ?
	Summary: Warps
	Questions?
	Extra Reference Stuff Follows
	Credits

