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Image Processing 

Image Warping  
(Geometric Transforms) 

Material in this presentation is largely based on/derived from  
presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University 



Lecture Objectives 

• Previously 
– Image Interpolation 

 
• Today 

– Image Warping (Geometric Transforms) 

 



Outline 

• Warping (Geometric Transforms) 

– General Image Warps 
– Forward and Inverse Mapping 

 



Apples of All Shapes and Sizes 



Image Warps 
• Mapping and functions 

X() and Y() map (u, v) to (x, y) 

in vector notation: 



Forward Mapping: [ X(), Y() ] 
• If the image was continuous 

    and the forward map: [X(), Y()]  
                   is relatively smooth (no discontinuities) 

 
– Then for each old image pixel (u, v)  

we can paint new pixel (x, y)  
using the same color 



Forward Map 
• Digital image are NOT continuous 

– They consist of a finite number of samples = pixels 
– Allowing the following algorithm to perform a 

mapping 

(   x                ,                 y   ) 
original image’s 
pixel color 
at (u, v) 



Problem with Forward Map 
• With loss of “continuous/infinite” points 

– one-to-on mapping cannot happen 
– forward map leaves holes and folds 

? = hole in new image 
    = fold in new image 

scaled down 
on this side 

scaled up 
on this side 



Searching for a Solution 

Could try weighting average of some kind  
   to mix colors, to fill holes and fix folds… 

[ X(), Y() ] 



Still Searching… 
• If map is to curvy lines/edges that averaging 

becomes more difficult 
– not very “pixel-to-pixel” 

Must be an easier way… 

[ X(), Y() ] 



Inverse Map Solution 
• Invert the problem 

– Look at each output pixel and determine what input 
pixel(s) map to it 

• instead of sending each input pixel to an output pixel 

No holes or folds !!! 



Inverse Map: [ U(), V() ] 

• Recall the forward map: 
 
 

• Invert the mapping functions X() and Y() 

or in matrix form: 



Inverse Mapping Algorithm 

(   u                ,                 v   ) 

The inverse map provides a complete covering 



Forward vs Inverse Maps 

(   u                ,                 v   ) 

Inverse Map: 

(   x                ,                 y   ) 

Forward Map: 



Inverse Supports Clipping Too! 
Warping and clipping 
   all together, same time 



Inverse Supports Clipping Too! 

A forward map would map this pixel to the new image  
and require it to be cleared off later 



Affine Map 
• A geometric transformation that maps  

points and parallel lines  
to points and parallel lines 
 

• General form of an affine map: 

aij are coefficient constants 



Affine Maps: Matrix Form 

in matrix form looks like: 



What about Infinity? 
• Euclidean/Cartesian space cannot handle points at infinity 
 cannot describe projective space 
 

Image from: http://www.songho.ca/math/homogeneous/homogeneous.html 

The railroad tracks become narrower  
as they meet the horizon 
 parallel lines intersect at infinity 

Projective space allows for this effect 
 
AND 
 
It is easy to transform points 
to and from Cartesian space 
into and out of Projective space 
… 



Homogeneous Coordinate System 

• Every (Cartesian) point 
has an identical third coordinate 

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique 
            however, 
            Conversion from Homogeneous coordinates to Cartesian is NOT unique 

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html 



Homogeneous Coordinate System 

• Every (Cartesian) point 
has an identical third coordinate 

NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique 
            however, 
            Conversion from Homogeneous coordinates to Cartesian is NOT unique 

Image from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/homo-coor.html 

Affine 
will focus on the plane defined by  
w = 1 

 ( u, v, 1)  ( x, y ) 

Image will be (u, v, 1)  
with u and v the pixel coordinates 



Matrix Translation 
• Given homogeneous coordinates (u, v, 1) 

– Find Cartesian coordinates (x, y) 

Explicitly, x then would be calculated as: 

AGAIN: 
            Conversion from Homogeneous coordinates to Cartesian is NOT unique 
            coeffs aij will describe how we want to warp an image,  
 Example: a13 is a translation distance for x 



Points to Remember 

• Homogeneous Coordinates 
– allow affine transformations 

to be easily represented 
by matrix multiplications 
 

• Affine Maps 
– always have an inverse 
– can be represented in matrix form  

(via homogeneous coords) 



Scale: an affine map transform 

𝑥
𝑦
1

=
𝑎11𝑢
𝑎22𝑣

1
=

𝑎11 0 0
0 𝑎22 0
0 0 1

𝑢
𝑣
1

 

• scale(x, y) = ( a11u,  a22v ) 



Translate: an affine map transform 

• translate (x, y) = ( u + a13,  v + a23 ) 

𝑥
𝑦
1

=
𝑢 + 𝑎13
𝑣 + 𝑎23

1
=

1 0 𝑎13
0 1 𝑎23
0 0 1

𝑢
𝑣
1

 

(0, 0) 

(a13, a23) 



Shear: an affine map transform 

• shear (x, y) = ( u + a12v,   a21u + v) 

𝑥
𝑦
1

=
𝑢 + 𝑎12𝑣
𝑎21𝑢 + 𝑣

1
=

1 𝑎12 0
𝑎21 1 0

0 0 1

𝑢
𝑣
1

 

a12v 

a21u 



Rotate: an affine map transform 

• rotate (x, y) = (𝑢 cos 𝜃 − 𝑣 sin𝜃, 𝑢 sin𝜃 + 𝑣 cos 𝜃) 

𝑥
𝑦
1

=
𝑢 cos 𝜃 − 𝑣 sin𝜃
𝑢 sin𝜃 + 𝑣 cos 𝜃

1
=

cos 𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0

0 0 1

𝑢
𝑣
1

 

𝜃 

NOTE: rotation is around (0,0)… which might not achieve the expected result 

(0, 0) (0, 0) 



Composing Affine Warps 

• R is a rotation 
• S is a scale 
• T is a translation 

First do a rotation, followed by a scale, then a translation 
Denote this as: 

By associative property can also denote it as: 



Composing Affine Warps 

• All translations, scales, and rotations can be done using one matrix 
 

• Yields ONE SIMPLE representation 
– Important: order of operations when creating the matrix does matter, be careful 
– i.e. operations are NOT commutative 



Example 



T and S Commutative ? 

• What is ST ? 

𝑆𝑆 =
1/2 0 0

0 1/2 0
0 0 1

1 0 1/4
0 1 1/4
0 0 1

= 
1/2 0 1/8

0 1/2 1/8
0 0 1

 

NOT commutative ! 



Summary: Warps 
• Warps are cool 

 
• Homogeneous coordinates are cool 

– Can represent affine warps in one “matrix way” 

 
• Affine warps are awesome 

– Can combine warps into one matrix 
– BUT order matters 



Questions? 
• Beyond D2L 

– Examples and information 
can be found online at: 

• http://docdingle.com/teaching/cs.html 
 

 
 
 
 

• Continue to more stuff as needed 



Extra Reference Stuff Follows 



Credits 
• Much of the content derived/based on slides for use with the book: 

– Digital Image Processing, Gonzalez and Woods 
 

• Some layout and presentation style derived/based on presentations by 
– Donald House, Texas A&M University, 1999 
– Bernd Girod, Stanford University, 2007 
– Shreekanth Mandayam, Rowan University, 2009 
– Igor Aizenberg, TAMUT, 2013 
– Xin Li, WVU, 2014 
– George Wolberg, City College of New York, 2015 
– Yao Wang and Zhu Liu, NYU-Poly, 2015 
– Sinisa Todorovic, Oregon State, 2015 
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