# Image Warping <br> (Geometric Transforms) 



## Image Processing

## Lecture Objectives

- Previously
- Image Interpolation
- Today
- Image Warping (Geometric Transforms)


## Outline

- Warping (Geometric Transforms)
- General Image Warps
- Forward and Inverse Mapping

Apples of All Shapes and Sizes


## Image Warps

- Mapping and functions


$$
\text { in vector notation: }\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
X(u, v) \\
Y(u, v)
\end{array}\right]
$$

## Forward Mapping: [ X(), Y() ]

- If the image was continuous and the forward map: $[\mathrm{X}(), \mathrm{Y}()]$
is relatively smooth (no discontinuities)
- Then for each old image pixel ( $u, v$ ) we can paint new pixel ( $\mathrm{x}, \mathrm{y}$ ) using the same color



## Forward Map

- Digital image are NOT continuous
- They consist of a finite number of samples = pixels
- Allowing the following algorithm to perform a mapping

$$
\begin{aligned}
& \text { for }(\mathrm{v}=0 ; \mathrm{v} \text { < in_height; v++) } \\
& \text { for }(\mathrm{u}=0 ; \mathrm{u} \text { < in_width; } \mathrm{u}++) \\
& \text { Out }[\underbrace{\operatorname{ran}}_{(\mathrm{round}(X(\mathrm{u}, \mathrm{v}))][\operatorname{round}(\mathrm{Y}(\mathrm{u}, \mathrm{v}))]}=\underbrace{\operatorname{In}[\mathrm{u}][\mathrm{v}]] ;}
\end{aligned}
$$

## Problem with Forward Map

- With loss of "continuous/infinite" points
- one-to-on mapping cannot happen
- forward map leaves holes and folds
? = hole in new image
$O=$ fold in new image

| 11 | 12 | 13 |
| :--- | :--- | :--- |
| 21 | 22 | 23 |
| 31 | 32 | 33 |

$$
[\mathrm{X}(), \mathrm{Y}()]
$$

|  |  |  |  |  | $?$ | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $?$ | $?$ | 13 | $?$ |
| $?$ | $?$ | 12 | $?$ | $?$ | $?$ | $?$ |
| 11, | $?$ | 22 | $?$ | $?$ | $?$ | $?$ |
| 21 | $?$ | $?$ | $?$ | $?$ | $?$ | 23 |
| 31 | $?$ | $?$ |  |  |  |  |
|  | $?$ | 32 | $?$ | $?$ | $?$ | $?$ |
|  |  |  |  | $?$ | $?$ | $?$ |

scaled up on this side

In
Out

## Searching for a Solution



Could try weighting average of some kind to mix colors, to fill holes and fix folds...

## Still Searching...

- If map is to curvy lines/edges that averaging becomes more difficult
- not very "pixel-to-pixel"


Must be an easier way...

## Inverse Map Solution

- Invert the problem
- Look at each output pixel and determine what input pixel(s) map to it
- instead of sending each input pixel to an output pixel

| 11 | 12 | 13 |
| :--- | :--- | :--- |
| 21 | 22 | 23 |
| 31 | 32 | 33 | $[\mathrm{U}(), \mathrm{V}()]$


|  |  |  |  |  | 13 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 12 | 13 | 13 | 13 |
| 11 | 11 | 12 | 12 | 12 | 13 | 13 |
| 21 | 21 | 22 | 22 | 22 | 23 | 23 |
| 31 | 31 | 22 | 22 | 22 | 23 | 21 |
|  | 31 | 32 | 32 | 32 | 33 | 3 |
|  |  |  |  | 32 | 3 | 3 |

Out

## Inverse Map: [ U(), V() ]

- Recall the forward map:

$$
\begin{gathered}
x=X(u, v) \\
y=Y(u, v)
\end{gathered}
$$

- Invert the mapping functions $X()$ and $Y()$

$$
\begin{aligned}
& \left.u=U(x, y), \quad \text { or in matrix form: } \quad\left[\begin{array}{l}
u \\
v \\
v=V(x, y),
\end{array}\right]=\left[\begin{array}{c}
U(x, y) \\
V(x, y)
\end{array}\right], ~\right]
\end{aligned}
$$

## Inverse Mapping Algorithm

for $\left(y=0 ; y<o u t \_h e i g h t ; ~ y++\right)$
for $\left(x=0 ; x<o u t \_w i d t h ; x++\right)$
Out $[x][y]=\operatorname{In}[r o u n d(U(x, y))][r o u n d(V(x, y))] ;$

( u
v )

| 11 | 12 | 13 |
| :--- | :--- | :--- |
| 21 | 22 | 23 |
| 31 | 32 | 33 |

$$
[\mathrm{U}(), \mathrm{V}()]
$$



|  |  |  |  |  | 13 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 13 | 13 | 13 |
| 11 | 11 | 12 | 12 | 12 | 13 | 13 |
| 21 | 21 | 22 | 22 | 22 | 23 | 23 |
| 31 | 31 | 22 | 22 | 22 | 23 | 23 |
|  | 31 | 32 | 32 | 32 | 33 | 3 |
|  |  |  |  | 32 | 3 | 33 |

Out

The inverse map provides a complete covering

## Forward vs Inverse Maps

Forward Map:

```
for(v = 0; v < in_height; v++)
    for(u = 0; u < in_width; u++)
            Out[round(X(u,v))][round(Y(u,v))] = In[u][v];
```



```
    ( x , y )
```

Inverse Map:

$$
\begin{aligned}
& \text { for }(y=0 ; y<\text { out_height } ; y++) \\
& \text { for }(x=0 ; x<\text { out_width; } x++) \\
& \text { Out }[x][y]=\operatorname{In}[\operatorname{round}(U(x, y))][\operatorname{round}(V(x, y))] ;
\end{aligned}
$$

## Inverse Supports Clipping Too!



## Inverse Supports Clipping Too!



A forward map would map this pixel to the new image and require it to be cleared off later

## Affine Map

- A geometric transformation that maps points and parallel lines to points and parallel lines
- General form of an affine map:

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{11} u+a_{12} v+a_{13} \\
a_{21} u+a_{22} v+a_{23}
\end{array}\right]} \\
X(u, v)=a_{11} u+a_{12} v+a_{13} \\
Y(u, v)=a_{21} u+a_{22} v+a_{23}
\end{gathered}
$$

$a_{i j}$ are coefficient constants

## Affine Maps: Matrix Form

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{11} u+a_{12} v+a_{13} \\
a_{21} u+a_{22} v+a_{23}
\end{array}\right]} \\
X(u, v)=a_{11} u+a_{12} v+a_{13} \\
Y(u, v)=a_{21} u+a_{22} v+a_{23}
\end{gathered}
$$

in matrix form looks like:

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

## What about Infinity?

- Euclidean/Cartesian space cannot handle points at infinity $\rightarrow$ cannot describe projective space


Image from: http://www.songho.ca/math/homogeneous/homogeneous.html

The railroad tracks become narrower as they meet the horizon
$\rightarrow$ parallel lines intersect at infinity

Projective space allows for this effect

AND

It is easy to transform points to and from Cartesian space into and out of Projective space

## Homogeneous Coordinate System

- Every (Cartesian) point has an identical third coordinate

$$
\begin{array}{ll}
(x, y, w) & \Leftrightarrow \quad\left(\frac{x}{w}, \frac{y}{w}\right) \\
\text { mogeneous }
\end{array} \quad \begin{gathered}
\text { Cartesian }
\end{gathered}
$$

Homogeneous


NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique however,
Conversion from Homogeneous coordinates to Cartesian is NOT unique

## Homogeneous Coordinate System

- Every (Cartesian) point has an identical third coordinate

$(u, v, 1) \quad \Leftrightarrow \quad(x, y)$<br>Homogeneous<br>Cartesian

## Affine

will focus on the plane defined by
w = 1
Image will be $(u, v, 1)$
with $u$ and $v$ the pixel coordinates


NOTE: Conversion from Cartesian coordinates to Homogeneous coordinates is unique however,
Conversion from Homogeneous coordinates to Cartesian is NOT unique

## Matrix Translation

- Given homogeneous coordinates ( $u, v, 1$ )
- Find Cartesian coordinates ( $\mathrm{x}, \mathrm{y}$ )

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Explicitly, $x$ then would be calculated as:

$$
x=a_{11} u+a_{12} v+a_{13}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Conversion from Homogeneous coordinates to Cartesian is NOT unique coeffs $a_{i j}$ will describe how we want to warp an image,

Example: $a_{13}$ is a translation distance for $x$

## Points to Remember

- Homogeneous Coordinates
- allow affine transformations to be easily represented by matrix multiplications
- Affine Maps
- always have an inverse
- can be represented in matrix form (via homogeneous coords)


## Scale: an affine map transform

- $\operatorname{scale}(x, y)=\left(a_{11} u, a_{22} v\right)$

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{11} u \\
a_{22} v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$



## Translate: an affine map transform

- translate $(x, y)=\left(u+a_{13}, v+a_{23}\right)$

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
u+a_{13} \\
v+a_{23} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & a_{13} \\
0 & 1 & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]
$$



## Shear: an affine map transform

- $\operatorname{shear}(x, y)=\left(u+a_{12} v, a_{21} u+v\right)$

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
u+a_{12} v \\
a_{21} u+v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a_{12} & 0 \\
a_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$



## Rotate: an affine map transform

- rotate $(\mathrm{x}, \mathrm{y})=(u \cos \theta-v \sin \theta, u \sin \theta+v \cos \theta)$

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
u \cos \theta-v \sin \theta \\
u \sin \theta+v \cos \theta \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$



NOTE: rotation is around ( 0,0 )... which might not achieve the expected result

## Composing Affine Warps

- R is a rotation
- $S$ is a scale

$$
R\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]
$$

- T is a translation

First do a rotation, followed by a scale, then a translation Denote this as:

$$
S\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
u^{\prime \prime} \\
v^{\prime \prime} \\
1
\end{array}\right]
$$

$$
T\left(S\left(R\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]\right)\right)=\left[\begin{array}{c}
u^{\prime \prime \prime} \\
v^{\prime \prime \prime} \\
1
\end{array}\right]
$$

$$
T\left[\begin{array}{c}
u^{\prime \prime} \\
v^{\prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
u^{\prime \prime \prime} \\
v^{\prime \prime \prime} \\
1
\end{array}\right]
$$

By associative property can also denote it as:

$$
((T S) R)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
u^{\prime \prime \prime} \\
v^{\prime \prime \prime} \\
1
\end{array}\right]
$$

## Composing Affine Warps

$$
\begin{aligned}
M & =T S R, \\
M\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] & =\left[\begin{array}{c}
u^{\prime \prime \prime} \\
v^{\prime \prime \prime} \\
1
\end{array}\right]
\end{aligned}
$$

- All translations, scales, and rotations can be done using one matrix
- Yields ONE SIMPLE representation
- Important: order of operations when creating the matrix does matter, be careful
- i.e. operations are NOT commutative


## Example



## T and S Commutative?

$$
\begin{gathered}
T S=\left[\begin{array}{ccc}
1 & 0 & 1 / 4 \\
0 & 1 & 1 / 4 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
M=T S=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 4 \\
0 & 1 / 2 & 1 / 4 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- What is ST ?

$$
S T=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 / 4 \\
0 & 1 & 1 / 4 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 8 \\
0 & 1 / 2 & 1 / 8 \\
0 & 0 & 1
\end{array}\right]
$$

NOT commutative!

## Summary: Warps

- Warps are cool
- Homogeneous coordinates are cool
- Can represent affine warps in one "matrix way"
- Affine warps are awesome
- Can combine warps into one matrix
- BUT order matters


## Questions?

- Beyond D2L
- Examples and information can be found online at:
- http://docdingle.com/teaching/cs.html
- Continue to more stuff as needed


## Extra Reference Stuff Follows

## Credits

- Much of the content derived/based on slides for use with the book:
- Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
- Donald House, Texas A\&M University, 1999
- Bernd Girod, Stanford University, 2007
- Shreekanth Mandayam, Rowan University, 2009
- Igor Aizenberg, TAMUT, 2013
- Xin Li, WVU, 2014
- George Wolberg, City College of New York, 2015
- Yao Wang and Zhu Liu, NYU-Poly, 2015
- Sinisa Todorovic, Oregon State, 2015


