Warps, Filters, and Morph Interpolation

Lecture Objectives

- Previously
- Colors
- Filtering
- Interpolation
- Warps
- Today
- Review
- Morphs

Outline

- Review: Image Fundamentals
- Review: Warping, Filtering, Interpolation
- Image Morphing

Image Formation

Sampling and Quantization

What is an Image?

- 2D Function or Array
$-f(x, y)$ gives the pixel intensity at position (x, y)
- defined over a rectangle, with finite range
- $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{d}] \rightarrow[0,1]$

For color image f is a vector function: $\quad f(x, y)=\left[\begin{array}{l}r(x, y) \\ g(x, y) \\ b(x, y)\end{array}\right]$

Digital Image

- Digital Images
- Sample the 2D space on a regular grid
- Quantize each sample (to nearest integer)
- Assume samples are D distance apart
- $f[i, j]=$ quantize($f(i D, j D)$)
- Image is now a matrix of integer values:

$\boldsymbol{j} \boldsymbol{\boldsymbol { j }} \boldsymbol{i} \downarrow$62 79 23 119 120 105 4 0 10 10 9 62 12 78 34 0 10 58 197 46 46 0 0 48 176 135 5 188 191 68 0 49 2 1 1 29 26 37 0 77 0 89 144 147 187 102 62 208 255 252 0 166 123 62 0 31 166 63 127 17 1 0 99 30								

Images may have Aliasing Artifacts

Image Manipulation

Point Processing Example

Negative

Image Enhancement Example

$h(a)=a^{r}$
gamma correction

Contrast Stretching Example

Histogram Analysis

Histogram Equalization

$\left\|\left\|\left\|\|_{n}, \ldots\right.\right.\right.$

Filtering (neighborhood processing)

- 'Global-ness' of histogram may be too big
- Example: Mix-up all the pixels

- Histogram stays same
- May need more locally spatial information for some operations to work as desired
- such as noise removal

Noise Examples

Noise Reduction

- Mean, Median, and Gaussian filters
- local neighborhoods

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	100	130	110	120	110	0	0
0	0	0	110	90	100	90	100	0	0
0	0	0	130	100	90	130	110	0	0
0	0	0	120	100	130	110	120	0	0
0	0	0	90	110	80	120	100	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Comparison: Salt and Pepper Noise

Mean

Gaussian

Median

Outline

- Review: Image Fundamentals
- Review: Warping, Filtering, Interpolation
- Image Morphing

Filtering and Warping: Review

- Filtering
- modify an image based on image color content without any intentional change in image geometry
- resulting image essentially has the same size and shape as the original
- Warping
- modification of an image that operates on the image's geometric structure
- Review follows...

Image Filtering versus Warping

image Filtering:
changes range of image

$$
g(x)=h(f(x))
$$

image Warping:
changes domain of image

$$
g(x)=f(h(x))
$$

Image Filtering versus Warping

image Filtering:
changes range of image $g(x)=h(f(x))$

image Warping:
changes domain of image

$$
g(x)=f(h(x))
$$

Parametric (global) warping

2D coordinate transforms

- translation: $x^{\prime}=x+t$

$$
x=(x, y)
$$

- rotation: $\quad x^{\prime}=R x+t$
- similarity: $\quad x^{\prime}=s R x+t$
- affine: $\quad x^{\prime}=A x+t$
- perspective: $x^{\prime} \cong H x$

$$
x=(x, y, 1)
$$

(x is a homogeneous coordinate)

2D image transforms

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Image Warping

- Given a coordinate transform $x^{\prime}=h(x)$ and a source image $f(x)$, how do we compute a transformed image $g\left(x^{\prime}\right)=f(h(x))$?

Forward Mapping

- Send each pixel $f(x)$ to its corresponding location $x^{\prime}=h(x)$ in $g\left(x^{\prime}\right)$
- What if pixel lands "between" two pixels?

Forward Mapping

- Send each pixel $f(x)$ to its corresponding location $x^{\prime}=h(x)$ in $g\left(x^{\prime}\right)$
- What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse Mapping

- Get each pixel $g\left(x^{\prime}\right)$ from its corresponding location $x=h^{-1}\left(x^{\prime}\right)$ in $f(x)$
- What if pixel comes from "between" two pixels?

Inverse Mapping

- Get each pixel $g\left(x^{\prime}\right)$ from its corresponding location $x=h^{-1}\left(x^{\prime}\right)$ in $f(x)$
- What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (pre-filtered) source image

Forward versus Inverse

- Forward Map
- Potential Gap Problems
- Inverse Map
- Most useful
- For each output pixel
- Lookup at inverse warp location in input image

Interpolation

- Given

- Methods
- nearest neighbor

Linear interpolation

Cubic interpolation
$-\operatorname{sinc}$

Nearest-neighbor interpolation

Nearest Neighbor

- Given pixel ($\mathrm{i}^{\prime}, \mathrm{j}^{\prime}$) in the destination image
- Find the corresponding pixel in the source image (i, j)

EXAMPLE:

Assume source image has
Assume destination image has
width $=\mathrm{w}$, and height $=\mathrm{h}$
width $=w^{\prime}$ and height $=h^{\prime}$

Then a point in the destination is given by

$$
\begin{array}{ll}
\mathrm{i}^{\prime}=\mathrm{i}^{*} \mathrm{w}^{\prime} / \mathrm{w} & \begin{array}{l}
\text { integer division } \\
\text { so decimal portion } \\
\text { is dropped }
\end{array} \\
\mathrm{j}^{\prime}=\mathrm{j}^{*} \mathrm{~h}^{\prime} / \mathrm{h} & \begin{array}{l}
\text { is }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Note: if using inverse mapping idea, } \\
& \text { then you know } i^{\prime} \text { and } j^{\prime} \text { and must solve for } i \text { and } j \\
& \text { So may be more useful to know } \quad \begin{array}{l}
i=i^{\prime *} w / w^{\prime} \\
j=j^{\prime *} h / h^{\prime}
\end{array}
\end{aligned}
$$

PROBLEM: Aliasing in both enlarging and reducing image size

Bilinear Interpolation

$$
\begin{array}{rll}
\left(i^{\prime}, j^{\prime}\right)=f(x, y)=(1-a)(1-b) & f[i, j] \\
& +a(1-b) & f[i+1, j]
\end{array}
$$

Results are better than nearest neighbor But there is still better

$$
+a b \quad f[i+1, j+1
$$

$$
+(1-a) b \quad f[i, j+1]
$$

$$
\text { image, } f
$$

Bicubic Interpolation

Objective: Determine the color of every point ($\mathrm{i}^{\prime}, \mathrm{j}^{\prime}$) in the destination image
Point (i^{\prime}, j^{\prime}) of destination image corresponds to a non-integer position in the source image $\rightarrow(x, y)=$ where $x=i^{*} w^{\prime} / w$

$$
y=j^{*} h^{\prime} / h
$$

The nearest pixel coordinate (i, j) is the integer part of x and y with $\quad d x=x-i$ and $d y=y-j$

Transformed position of (i^{\prime}, j^{\prime}) i.e. (x, y)

Original image

Recall Again Inverse map idea: $i=i^{*} w / w^{\prime}$ $j=j^{*} h / h^{\prime}$

Bicubic Interpolation

Objective: Determine the color of every point ($\mathrm{i}^{\prime}, \mathrm{j}^{\prime}$) in the destination image
Point (i^{\prime}, j^{\prime}) of destination image corresponds to a non-integer position in the source image $\rightarrow(x, y)=$ where $x=i^{*} w^{\prime} / w$

$$
y=j^{*} h^{\prime} / h
$$

Transformed $R(x)=\frac{1}{6}\left[P(x+2)^{3}-4 P(x+1)^{3}+6 P(x)^{3}-4 P(x-1)^{3}\right]$ position of (i^{\prime}, j^{\prime}) i.e. (x, y)

$$
P(x)= \begin{cases}x & x>0 \\ 0 & x \leq 0\end{cases}
$$

The nearest pixel coordinate (i, j) is the integer part of x and y with $\quad d x=x-i$ and $d y=y-j$

Original image

Recall Again
Inverse map idea:
$i=i^{*} w / w^{\prime}$ $j=j^{*} h / h^{\prime}$

Outline

- Review: Image Fundamentals
- Review: Warping, Filtering, Interpolation
- Image Morphing
- Cross Fading
- Feature Correspondence
- Warping Interpolation Options
- Splines
- Triangular Mesh
- Radial Basis Functions (RBFs)

More Recap: Morphing

- Morphing is a special effect in animation that changes one image into another through a seamless transition
- Early methods used cross-fading techniques on film
- More common now
- Is a combination of generalized image warping with a cross dissolve between image elements

Morph: Cross Fading/Dissolving

- Averaging Images (an "easy" morph)
- Using the compositing equation
- $\mathrm{C}=\alpha \mathrm{F}+(1-\alpha) \mathrm{B}$

Image Morphing WITHOUT feature correspondence

Morphing: Feature Correspondence

- Input 2 images I_{0} and I_{N} :

- Output is image sequence I_{i}, with $i=1$..N-1

- User specifies sparse correspondences on the images
- Vector pairs: $\left\{\left(P_{j}^{0}, P_{j}^{N}\right)\right\}$

Morphing: Feature Correspondence

- For each intermediate frame I_{t}
- Interpolate feature locations $\mathrm{P}_{\mathrm{i}}^{\mathrm{t}}=(1-\mathrm{t}) \mathrm{P}_{\mathrm{i}}^{0}+\mathrm{t} \mathrm{P}_{\mathrm{i}}^{1}$
- Perform two warps: one for I_{0}, one for I_{1}
- Deduce a dense warp field from the pairs of features
- Warp the pixels
- Linearly interpolate the two warped images

crossfade
morph with
feature
correspondence

Example: Input Images

Feature Correspondences

- Feature locations are the 2D vector points: y_{i}.

Interpolate Feature Locations

- Interpolate between the 2D vectors
- Provides the 2D vector points: x_{i}.

Warp Each Image to Intermediate Location

Two DIFFERENT warps

Same target location
but different source location

The x_{i} are the same (intermediate locations)
The y_{i} are different
(source feature locations)

The y_{i} do NOT change throughout the animation BUT
the x_{i} are different for each intermediate image

Images shown are for $t=0.5$
-- the y_{i} are in the middle

Warp each image to Intermediate Locations

Linearly Interpolate Colors

Interpolation weights are a function of time

$$
C=(1-t) f_{t}^{0}{ }_{t}\left(I_{0}\right)+t f^{1}{ }_{t}\left(I_{1}\right)
$$

Feature Summary So Far

- For each intermediate frame I_{t} :
- Interpolate feature locations
- $y_{i}^{t}=(1-t) x_{i}^{0}+t x_{i}^{1}$.
- Perform two warps: one for I_{0} and one for I_{1}
- Calculate a warp field from the feature pairs
- Warp the pixels
- Linearly interpolate the two warped images

Warp Options

- Feature Point to Feature Point
- But how exactly do those warps work?

Warp Options: non-parametric

- Move control points to specify a spline warp
- Spline produces a smooth vector field

Warp Specification - too dense

- We could specify all the spline control points
- Interpolate to complete a warping function

But we really want to specify only a few points - not the entire grid

Warp Specification - too dense

- We should instead specify corresponding points
- Interpolate to complete a warping function

How do we do it?
How do we go from feature points to pixels?

Triangular Mesh of Images

- Input correspondences at key feature points
- Define a triangular mesh over the points
- Use SAME MESH for both images
- Provides triangle-to-triangle correspondences
- Warp each triangle separately from source to destination

Morphing: Triangle Method

- Feature points are marked on source and target images
- i.e. correspondence points identified
- Points are use to form triangles
- Triangulation is interpolated for intermediate frames
- Images are warped based on the interpolation of points
- Colors are blended (as in crossfade)

Source

」

Target

Morphing: Triangle Method

- Interpolation is in the triangular domain
- How is P related to P_{1}, P_{2}, and P_{3} ?

Morphing: Triangle Method

- Interpolation is in the triangular domain
- How is P related to P_{1}, P_{2}, and P_{3} ?

$$
\begin{gathered}
P=u P_{1}+v P_{2}+w P_{3} . \\
A=\text { area of triangle } \\
u=A_{1} / A \\
v=A_{2} / A \\
w=A_{3} / A
\end{gathered}
$$

$\mathrm{u}, \mathrm{v}, \mathrm{w}$: Barycentric coordinates
Given the coordinates of the three vertices of a triangle $A B C$, the area is given by area $=\left|\frac{A x(B y-C y)+B x(C y-A y)+C x(A y-B y)}{2}\right|$

Triangulation Morphing: Problems

- Not very continuous - only C^{0}.

Fig. L. Darsa

- Folding problems

Desires of Warp Interpolation

- Looking for a warping field
- A function that given a 2D point returns a warped 2D point
- Only have a sparse number of correspondence points
- These points specify values of the warping field
- This is an interpolation problem
- Given sparse data, find a smooth function

Interpolation in 1D

- Looking for a function f
- Have N data points: x_{i}, y_{i}.
- Scattered points \rightarrow spacing between x_{i} is non-uniform
- Desire f such that
- For each $i, f\left(x_{i}\right)=y_{i}$
- f is smooth
- What "smooth" means can yield different f

Radial Basis Functions (RBF)

- Place a smooth kernel R centered on each data point x_{i}

Radial Basis Functions (RBF)

- Place a smooth kernel R centered on each data point x_{i}

- $f(z)=\Sigma \alpha_{i} R\left(z, x_{i}\right)$
- Find weights α_{i} to so $f\left(x_{i}\right)=y_{i}$ for all i

Kernel Choices

- Many choices for what kernel function to use

An option to use is an inverse multi-quadric

$$
R\left(z, x_{i}\right)=\frac{1}{\sqrt{c+\left\|z-x_{i}\right\|^{2}}}
$$

Notice controls falloff
Easy choice is to pick a constant c for every kernel

Better option
For each kernel select a unique \boldsymbol{c} such that \boldsymbol{c} is the squared distance to the nearest other $\boldsymbol{x}_{\boldsymbol{j}}$.

Other Kernel Options

- Gaussians

$$
e^{-r^{2} / 2 \sigma}
$$

- Thin plate splines

$$
r^{2} \log r
$$

» Aside:

- May want or need to add a global polynomial term

Applying the Interpolation

- $f(z)=\sum \alpha_{i} R\left(z, x_{i}\right)$
- N equations
- for each $j, f\left(x_{j}\right)=y_{j}$

$$
y_{j}=\sum \alpha_{i} R\left(z, x_{i}\right)
$$

- N unknowns: α_{i}.
- Invert the matrix

Differences of Methods

- $f(z)=\sum \alpha_{i} R\left(z, x_{i}\right)$

Note, at a given data point the influence of each function is NON-ZERO EVERYWHERE \rightarrow the values of the other bases are not zero

This is different from interpolation splines
\rightarrow know the neighborhood of influence

Recap: 1D Scattered Data Interpolation

- Sparse input/output pairs: x_{i}, y_{i}.
- non-uniform sampling
- Radial Basis Functions (RBFs)
- Weighted sum of kernels R centered at data points
- $f(z)=\Sigma \alpha_{i} R\left(z, x_{i}\right)$
- Compute the weights α_{i}, by enforcing interpolation
- $f\left(x_{j}\right)=y_{j}$.
- Simple linear system

RBF warping: 2D case

- Think vector functions
- f was $R \rightarrow R$, is now $R^{2} \rightarrow R^{2}$.
- Still have N data points
$-x_{i}$ and y_{i} are now 2D vectors
- Use 2D kernels at each data point (think cone-like) $\boldsymbol{\Delta}$
- The weights, α_{i}, are also 2D vectors
- Solve a linear system of 2 N equations and 2 N unknowns

Example

Still may have folding problems...

RBF: Further Investigation

- Students are encouraged to perform further investigations using RBFs
- Contrasting with the spline interpolation methods
- Discover other applications/uses of RBFs
de Boor, C. (1978).
A practical guide to splines, New York: Springer Verlag.

Brenner, S and Scott, L (1994).
The mathematical theory of finite elements Springer, New York.

Bishop, C.M. (1995).
Neural networks for pattern recognition, Oxford: Clarendon Press.

Powell, M J D (1997).
A new iterative algorithm for thin plate spline interpolation in two dimensions, Annals of Numerical Mathematics 4: 519-527.

Davis, P J (1975).
Interpolation and Approximation Dover, New York.

Turk,G.and O'Brien, J. 1999. Shape transformation using variational implicit functions. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 1999), 335-342.

Witkin,A.P. And Heckbert, P.S. 1994. Using particles to sample and control implicit surfaces. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 94), 269-278.

Buhmann, Martin D. (2003),
Radial Basis Functions: Theory and Implementations, Cambridge University Press

Outline

- Review: Image Fundamentals
- Review: Warping, Filtering, Interpolation
- Image Morphing
- Cross Fading
- Feature Correspondence
- Warping Interpolation Options
- Splines
- Triangular Mesh
- Radial Basis Functions (RBFs)
- Other options

From Points to Lines

- Point based features can triangulate image areas
- Triangle interpolation has folding issues
- RBF interpolation also has folding issues
- Other options?
- Line based features also can be used

Beier, T \& Neely, S. (1992). Feature-based image metamorphosis
Computer Graphics 26 (2): 35-42. doi: 10.1145/133994.134003
See also a contrast paper at:
http://airccse.org/journal/sipij/papers/2411sipij20.pdf
Bhatt Bhumika, G (2011).
Comparative Study of Triangulation based and Feature based Image Morphing Signal \& Image Processing: An International Journal (SIPIJ) Vol.2, No.4, Dec 2011.

So Again: Morphing

- Morphing is a special effect in animation that changes one image into another through a seamless transition.
- Early methods used cross-fading techniques on film
- More common now
- Is a combination of generalized image warping with a cross dissolve between image elements

public domain images from wikimedia commons
https://commons.wikimedia.org/wiki/File:Bush-Arnie-morph.jpg

Feature Summary So Far

- For each intermediate frame I_{t} :
- Interpolate feature locations
- $y_{i}^{t}=(1-t) x_{i}^{0}+t x_{i}^{1}$.
- Performa two warps: one for I_{0} and one for I_{1}
- Calculate a warp field from the feature pairs
- Warp the pixels
- Linearly interpolate the two warped images

Line Pair Option

- May also morph using line pairs
- instead of point pairs

Beier, T \& Neely, S. (1992). Feature-based image metamorphosis Computer Graphics 26 (2): 35-42. doi: 10.1145/133994.134003

For each pixel \boldsymbol{X} in the destination image find the corresponding $\boldsymbol{u}, \boldsymbol{v}$ find the \boldsymbol{X}^{\prime} in the source image for that $\boldsymbol{u , v}$ destinationImage $(\boldsymbol{X})=$ sourceImage $\left(\boldsymbol{X}^{\prime}\right)$

Figure 2: Single line pair examples

Multiple Line Pairs

For each pixel X in the destination

```
\(\boldsymbol{D S U} \boldsymbol{M}=(0,0)\)
weightsum \(=0\)
For each line \(\boldsymbol{P}_{\boldsymbol{i}} \boldsymbol{Q}_{\boldsymbol{i}}\)
            calculate \(\boldsymbol{u}, \boldsymbol{v}\) based on \(P_{i} Q_{i}\)
            calculate \(X^{\prime}{ }_{i}\) based on \(\boldsymbol{u}, \boldsymbol{v}\) and \(P_{i}{ }^{\prime} Q_{i}{ }^{\prime}\)
            calculate displacement \(D_{i}=X_{i}{ }^{\prime}-X_{i}\) for this line
            dist \(=\) shortest distance from \(X\) to \(P_{i} Q_{i}\)
            weight \(=\left(\text { length }^{p} /(a+\text { dist })\right)^{b}\)
    DSUM += \(D_{i}{ }^{*}\) weight
    weightsum \(+=\) weight
\(X^{\prime}=X+D S U M\) / weightsum
destinationImage \((\boldsymbol{X})=\operatorname{sourceImage}\left(\boldsymbol{X}^{\prime}\right)\)
```


Destination Image

Figure 4: Multiple line pair example

Challenge

- Challenge 1
- Implement a program to crossfade 2 input images
- Display crossfade animation
- Challenge 2
- Implement a program to allow the user to select features on 2 different images to morph between
- Display morphing animation
- Suggest using line-based algorithm first
- Then try point-based (with triangulation then RBF)

Outline

- Review: Image Fundamentals
- Review: Warping, Filtering, Interpolation
- Image Morphing
- Cross Fading
- Feature Correspondence
- Warping Interpolation Options
- Splines
- Triangular Mesh
- Radial Basis Functions (RBFs)
- Other options

Questions?

- Beyond D2L
- Examples and information can be found online at:
- http://docdingle.com/teaching/cs.html
- Continue to more stuff as needed

Extra Reference Stuff Follows

Nearest Nhbr Interp

Bilinear Interp

Bicubic Interp

Credits

- Much of the content derived/based on slides for use with the book:
- Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
- Donald House, Texas A\&M University, 1999
- Bernd Girod, Stanford University, 2007
- Shreekanth Mandayam, Rowan University, 2009
- Igor Aizenberg, TAMUT, 2013
- Xin Li, WVU, 2014
- George Wolberg, City College of New York, 2015
- Yao Wang and Zhu Liu, NYU-Poly, 2015
- Sinisa Todorovic, Oregon State, 2015

