## Digital Image Processing <br> Feature Based Morphing Using Lines

## Lecture Objectives

- Previously
- Interpolation
- Warping
- Morphing
- Today
- Feature Based Morphs
- Details of using line pairs


## Morphing

- A smooth transition from one shape and coloring to another
- An image morph involves
- warping both images to some intermediate shape such that they can be superimposed on each other
- blending the two images together to produce a third image


Figure 13.1: A Step in a Morph of a Brick into a Ball

## Sample Steps

- Blend is controlled by giving more strength to the original image that is closer to the deformed shape


Figure 13.2: Steps in Morph Sequence from Brick to Ball

## Feature-based Image Metamorphosis

- Concept:
- Morph one image into another using an inverse map by specifying corresponding features in both images using directed lines

Beier, T \& Neely, S. (1992). Feature-based image metamorphosis Computer Graphics 26 (2): 35-42. doi: 10.1145/133994.134003
-- Identify features via line-pairs

## 3 Examples: Each Using One Pair of Lines



Figure 2: Single line pair examples

## Transform via 1 pair of lines

- Given a line pair: $P Q$ and $P^{\prime} Q^{\prime}$
- Determine which pixel $X^{\prime}$ in the source image do we sample for the X pixel in the destination image



## Transform via 1 pair of lines

- Solution Design

```
For each pixel X in the destination image
    find the corresponding u,v
    find the X' in the source image for that u,v
    destinationImage(X) = sourceImage(X')
```

First:
Calculate parameters $u$ and $v$


Figure 1: Single line pair

## Transform via 1 pair of lines

- Solution Design

```
For each pixel X in the destination image
    find the corresponding u,v
    find the X' in the source image for that u,v
    destinationImage(X) = sourceImage(X')
```

First:
Calculate parameters $u$ and $v$ Then

Use u, v to get X'


Figure I: Single line pair

## Implementation



$$
\begin{equation*}
u=\frac{(X-P) \cdot(\boldsymbol{Q}-\boldsymbol{P})}{\|Q-P\|^{2}} \tag{1}
\end{equation*}
$$

walk-thru of this follows

$$
\begin{align*}
& \qquad=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \text { Perpendicular }(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|}  \tag{2}\\
& \boldsymbol{X}^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \tag{3}
\end{align*}
$$

## Walk-Thru

$$
u=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|^{2}}
$$

dot product and L2 norm

## Example of Dot Product

$(3,2) \cdot(4,5)=(3 * 4)+(2 * 5)=12+10$

L2 norm
is the length/magnitude of the vector


## Walk-Thru

$$
u=\frac{(X-P) \cdot(Q-P)}{\|Q-P\|^{2}}
$$

dot product and L2 norm

In words:
u is the position along the line PQ u is a fraction
like a time parameter

$$
\begin{aligned}
& \mathrm{u}=0 \rightarrow \mathrm{P} \\
& \mathrm{u}=1 \rightarrow \mathrm{Q}
\end{aligned}
$$

$u$ gives position of $X$ projected onto line $P Q$


## Walk-Thru

$$
\boldsymbol{v}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \text { Perpendicular }(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|}
$$

## Perpendicular()

returns the vector perpendicular to,
 and the same length as, the input vector

## Aside Example: Application of Transforms



$$
\begin{aligned}
& \text { Calculation of Perpendicular(PQ) } \\
& \text { assume } P \text { is }(0,0) \text { and } Q \text { at }(x, y) \\
& {\left[\begin{array}{cc}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right] \stackrel{\rightharpoonup}{P Q}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right]}
\end{aligned}
$$

## Walk-Thru

$$
\begin{aligned}
\boldsymbol{v}= & \frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \text { Perpendicular }(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|} \\
& =\frac{|P X| \mid \text { perpendicular }(P Q) \mid(\cos \alpha)}{|P Q|} \\
& =|P X|(\cos \alpha)
\end{aligned}
$$


$v$ is NOT normalized $=$ distance in pixels from the PQ line

## Walk-Thru

Using $u$ and $v$, we now compute $X^{\prime}$

$$
\boldsymbol{X}^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \operatorname{Perpendicular}\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|}
$$

## Walk-Thru

Using $u$ and $v$, we now compute $X^{\prime}$

$$
\begin{aligned}
\boldsymbol{X}^{\prime}= & \boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \\
& =P^{\prime}+u \cdot\left(P^{\prime} Q^{\prime}\right)+v(\underbrace{\frac{\text { perpendicular }\left(P^{\prime} Q^{\prime}\right.}{\left|P^{\prime} Q^{\prime}\right|}}_{\text {note: this is a unit vector }})
\end{aligned}
$$

## Walk-Thru

Using $u$ and $v$, we now compute $X^{\prime}$

$$
\begin{aligned}
\boldsymbol{X}^{\prime}= & \boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \\
& =P^{\prime}+u \cdot\left(P^{\prime} Q^{\prime}\right)+v(\underbrace{\frac{\text { perpendicular }\left(P^{\prime} Q^{\prime}\right.}{\left|P^{\prime} Q^{\prime}\right|}}_{\text {note: this is } a \text { unit vector }})
\end{aligned}
$$



## Walk-Thru

Using $u$ and $v$, we now compute $X^{\prime}$

$$
\begin{aligned}
\boldsymbol{X}^{\prime}= & \boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \\
& =P^{\prime}+u \cdot\left(P^{\prime} Q^{\prime}\right)+v(\underbrace{\frac{\text { perpendicular }\left(P^{\prime} Q^{\prime}\right.}{\left|P^{\prime} Q^{\prime}\right|}}_{\text {note: this is } a \text { unit vector }})
\end{aligned}
$$



## Walk-Thru

Using $u$ and $v$, we now compute $X^{\prime}$

$$
\begin{aligned}
& \boldsymbol{X}^{\prime}= \boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \\
&= P^{\prime}+u \cdot\left(P^{\prime} Q^{\prime}\right)+v(\underbrace{\frac{\text { perpendicular }\left(P^{\prime} Q^{\prime}\right.}{\left|P^{\prime} Q^{\prime}\right|}}_{\text {note: this is a unit vector }}) \\
& 2
\end{aligned}
$$



## Walk-Thru

Using $u$ and $v$, we now compute $X^{\prime}$

$$
\begin{aligned}
& X^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \\
& =P^{\prime}+u \cdot\left(P^{\prime} Q^{\prime}\right)+v\left(\frac{\text { perpendicular }\left(P^{\prime} Q^{\prime}\right.}{\left|P^{\prime} Q^{\prime}\right|}\right) \\
& 3
\end{aligned}
$$

## Finished: Transform with 1 Line Pair

```
For each pixel X in the destination image
    find the corresponding u,v
    find the X' in the source image for that u,v
    destinationImage(X) = sourceImage(X')
```



Figure I: Single line pair

## Results: Each Using One Pair of Lines



Figure 2: Single line pair examples

## Transform with Multiple Line Pairs

- More complex and makes use of fields of influence from each line to identify which pixel $\mathrm{X}^{\prime}$ in the source image that must be sampled for each pixel X in the destination image


Figure 4: Multiple line pair example

## Transform with Multiple Line Pairs


$X_{i}^{\prime}$ are obtained by single line pairs

## Transform with Multiple Line Pairs


$X_{i}^{\prime}$ are obtained by single line pairs
$D_{i}=X_{i}^{\prime}-X$
displacement

## Transform with Multiple Line Pairs


$X_{i}^{\prime}$ are obtained by single line pairs

$$
\begin{aligned}
\mathrm{D}_{\mathrm{i}}= & \mathrm{X}_{\mathrm{i}}^{\prime}-\mathrm{X} \\
& \text { displacement }
\end{aligned}
$$

$$
\text { weight }_{i}=\left(\frac{\left(\text { length }_{i}\right)^{p}}{a+\text { dist }_{i}}\right)^{b}
$$

$a, p$, and $b$
are constants that can be used to change the relative effect of the lines

## Transform with Multiple Line Pairs


$X_{i}^{\prime}$ are obtained by single line pairs

$$
D_{i}=X_{i}^{\prime}-X
$$

displacement

$$
\text { weight }_{i}=\left(\frac{\left(\text { length }_{i}\right)^{p}}{a+\text { dist }_{i}}\right)^{b}
$$

$a, p$, and $b$
are constants that can be used to change the relative effect of the lines

$$
X^{\prime}=X+\frac{\sum\left(\text { weight }_{i} * D_{i}\right)}{\sum \text { weight }_{i}}
$$

## Transform with Multiple Line Pairs


$X_{i}^{\prime}$ are obtained by single line pairs

$$
D_{i}=X_{i}^{\prime}-X
$$

displacement

$$
\text { weight }_{i}=\left(\frac{\left(\text { length }_{i}\right)^{p}}{a+\text { dist }_{i}}\right)^{b}
$$

$a, p$, and $b$
are constants that can be used to change the relative effect of the lines


$$
X_{1}^{\prime}=X+\frac{\sum\left(\text { weight }_{i} * D_{i}\right)}{\sum \text { weight }_{i}}
$$

## Transform with Multiple Line Pairs


$X_{i}^{\prime}$ are obtained by single line pairs

$$
D_{i}=X_{i}^{\prime}-X
$$

displacement

$$
\text { weight }_{i}=\left(\frac{\left(\text { length }_{i}\right)^{p}}{a+\text { dist }_{i}}\right)^{b}
$$

$a, p$, and $b$
are constants that can be used to change the relative effect of the lines

plus the weighted sum of $D_{i}$ (displacement)

$$
X^{\prime}=X+\frac{\sum\left(\text { weight }_{i} * D_{i}\right)}{\sum \text { weight }_{i}}
$$

## Constant Details



$$
\text { weight }_{i}=\left(\frac{\left(\text { len }_{i}\right)^{p}}{a+\text { dist }_{i}}\right)^{b}
$$

a - adjust the influence of distance; when a is larger, distance has smaller influence. When a is close to 0 , pixels on a line go exactly to corresponding line as the line's influence is infinite.

$$
a+\text { dist }_{i} \rightarrow 0 \text { then weight }_{i} \rightarrow \infty
$$


$a, p$, and $b$ are constants that can be used to change the relative effect of the lines

## Constant Details



$$
\text { weight }_{i}=\left(\frac{\left(\text { len }_{i}\right)^{p}}{a+\text { dist }_{i}}\right)^{b}
$$

a - adjust the influence of distance; when a is larger, distance has smaller influence. When a is close to 0 , pixels on a line go exactly to corresponding line as the line's influence is infinite.
b - adjust the influence of length/distance ratio; when $b$ is larger, longer and nearer line has larger influence. When $b$ is 0 , all lines have the same influence on each pixel.

Destination Image $\square$
$a, p$, and $b$ are constants that can be used to change the relative effect of the lines

## Constant Details



$$
\text { weight }_{i}=\left(\frac{\left(\text { len }_{i}\right)^{p}}{a+\operatorname{dist}_{i}}\right)^{b}
$$

a - adjust the influence of distance; when a is larger, distance has smaller influence. When a is close to 0 , pixels on a line go exactly to corresponding line as the line's influence is infinite.
b - adjust the influence of length/distance ratio; when b is larger, longer and nearer line has larger influence. When b is 0 , all lines have the same influence on each pixel.
p - adjust the influence of length; when $p$ is larger, longer
Destination Image lines have greater influence than shorter lines. When $p$ is 0 , different lengths have the same influence.
$a, p$, and $b$ are constants that can be used to change the relative effect of the lines

## Pseudocode: Multiple Line Pairs

```
For each pixel X in the destination
    DSUM = (0,0)
    weightsum = 0
    For each line Pi Qi
    calculate u,v based on Pi Qi
    calculate X'i based on u,v and Pi'Qi'
    calculate displacement Di = Xi' - Xi for this line
    dist = shortest distance from X to Pi Qi
    weight = (lengthp / (a + dist))b
    DSUM += Di * weight
    weightsum += weight
    \mp@subsup{X}{}{\prime}=\textrm{X}+\mathrm{ DSUM / weightsum }
```



## Results with Multiple Line Pairs



Figure 4: Multiple line pair example

## Morphing Between 2 Still Images

Source


Interpolate lines to create new lines of intermediate frame.


Destination


Subjects of images now have same geometry.

## Animated Sequences

## Source <br> Destination $\square-M-M-M-M-M-M$ <br> o.0 Interpolation weight 1.0

Specify lines on keyframes and interpolate lines on other frames

Example:
$\mathrm{S}_{1.5}, \mathrm{D}_{1.5}$ would be interpolated between $\mathrm{Q}_{1}, \mathrm{P}_{1}$ and $Q_{2}, P_{2}$.

Note:


Interpolation can be

1. on the end points of line pairs

OR
2. on the center, orientation and length of line pairs

## Questions?

- Beyond D2L
- Examples and information can be found online at:
- http://docdingle.com/teaching/cs.html
- Continue to more stuff as needed


## Extra Reference Stuff Follows





## Credits

- Much of the content derived/based on slides for use with the book:
- Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
- Donald House, Texas A\&M University, 1999
- Bernd Girod, Stanford University, 2007
- Shreekanth Mandayam, Rowan University, 2009
- Igor Aizenberg, TAMUT, 2013
- Xin Li, WVU, 2014
- George Wolberg, City College of New York, 2015
- Yao Wang and Zhu Liu, NYU-Poly, 2015
- Sinisa Todorovic, Oregon State, 2015



