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Image Compression 

Digital Image Processing 

Material in this presentation is largely based on/derived from  
presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University 

Caution: 
   The PDF version of this  
   presentation will appear  
   to have errors due to heavy  
   use of animations 



Lecture Objectives 

• Previously 
– Filtering 
– Interpolation 
– Warping 
– Morphing 

 
• Today 

– Image Compression 
 

Image Manipulation 
and Enhancement 



Definition: File Compression 

• Compression: the process of encoding 
information in fewer bits 
– Wasting space is bad, so compression is good 

 
– Image Compression 

• Redundant information in images 
– Identical colors 
– Smooth variation in light intensity 
– Repeating texture 



Identical Colors 

Mondrian’s Composition 1930 



Smooth Variation in Light Intensity 

Digital rendering using Autodesk VIZ.  
(Image Credit: Alejandro Vazquez.) 



Repeating Texture 

Alvar Aalto Summer House 1953 



What is Compression Really? 
• Works because of data redundancy 

– Temporal 
• In 1D data, 1D signals, Audio… 

– Spatial 
• correlation between neighboring pixels or data items 

– Spectral 
• correlation between color or luminescence components 
• uses the frequency domain to exploit relationships between 

frequency of change in data 

– Psycho-visual 
• exploits perceptual properties of the human (visual) system 



Two General Types 
• Lossless Compression 

– data is compressed and can be uncompressed without 
loss of detail or information 

• bit-preserving 
• reversible 

 
• Lossy Compression 

– purpose is to obtain the best possible fidelity for a 
given bit-rate 

• or minimizing the bit-rate to achieve a given fidelity measure 
– Video and audio commonly use lossy compression 

• because humans have limited perception of finer details 



Two Types 
• Lossless compression often involves some 

form of entropy encoding 
– based in information theoretic techniques 

• see next slide for visual 

 
• Lossy compression uses source encoding 

techniques that may involve transform 
encoding, differential encoding or vector 
quanatization 

• see next slide for visual 



Compression Methods 



Compression Methods 

next up 



Simple Lossless Compression 
• Simple Repetition Suppression 

– If a sequence contains a series of N successive tokens 
– Then they can be replaced with a single token and a 

count of the number of times the token repeats 
• This does require a flag to denote when the repeated token 

appears 
 

– Example 
• 123444444444 
• can be denoted 
• 123f9 
• where f is the flag for four 



Run-length Encoding (RLE) 

• RLE is often applied to images 
– It is a small component used in JPEG compression 

 

• Conceptually 
– sequences of image elements X1, X2,…,Xn are 

mapped to pairs (c1, L1), (c2, L2),…,(cn, Ln) 
• where ci represent the image intensity or color 
• and Li the length of the ith run of pixels 



Run-Length Encoding (RLE): lossless 

• Scanline: 2 2 2 2 2 2 2 3 4 1 1 1 
 
 

• Run-length encoding 
  ( 7  2) (1  3) (1  4) (3  1) 

12 values 

8 values 



Run-Length Encoding (RLE): lossless 

• Scanline: 2 2 2 2 2 2 2 3 4 1 1 1 
 
 

• Run-length encoding 
  ( 7  2) (1  3) (1  4) (3  1) 

12 values 

8 values 

run of 
repeating values 

repeat count pixel value 

25% reduction of memory use 



RLE: worst case 

• Scanline: 1 2 3 4 5 6 7 8 
 

• Run-length encoding: 
 (1 1)(1 2)(1 3)(1 4)(1 5)(1 6)(1 7) 

8 values 

16 values 

doubles space 



RLE: Improving 

• Scanline: 5 5 5 5 5 5 5 3 4 1 1 1 
 
 

• Run-length encoding 
   
  ( 7  5) (2 3 4)(3 1) 

need to flag this as meaning “not repeating” 

(7 2)  5 5 5 5 5 5 5 

(2 3 4)  3 4 
the flag indicates 
that 2 explicitly given 
values follow 

(3 1)  1 1 1 
Using this improvement 
The worst case then only adds 1 extra value 



How to flag the repeat/no repeat? 

• SGI Iris RGB Run-length Encoding Scheme 



Compression Methods 

next up 



Compression: Pattern Substitution 

• Pattern Substitution, lossless 
 

• Simple form of statistical encoding 
 

• Concept 
– Substitute a frequently repeating pattern with a 

shorter code 
• the shorter code(s) may be predefined by the algorithm 

being used or dynamically created 



Table Lookup 

• Table Lookup can be viewed as a Pattern 
Substitution Method 
 

• Example 
– Allow full range of colors (24 bit, RGB) 
– Image only uses 256 (or less) unique colors (8 bits) 
– Create a table of which colors are used 

• Use 8 bits for each color instead of 24 bits 
– Conceptually how older BMPs worked 

» color depth <= 8 bits 



Table Lookup: GIF 
• Graphics Interchange File Format (GIF) 

– uses table lookups  Color LookUp Table (CLUT) 



GIF Compression with Color LookUp Table (CLUT) 

Example 

Image Size = 1000x1000 
256 colors 
Each color 24 bit (RGB) 

with CLUT 
   1000*1000*8 bit (index data) 
    + 3*256*8bit (table data) 

without CLUT 
   1000*1000*24 bits 

Use about 2/3 the space 
(when image size is “big”) 



Compression: Pattern Substitution 

• Table lookups work 
 

• But Pattern Substitution typically is more 
dynamic 
– Counts occurrence of tokens 
– Sorts (say descending order) 
– Assign highest counts shortest codes 



Compression Methods 

next up 



Lossless Compression: Entropy Encoding 

• Lossless compression often involves some 
form of entropy encoding and are based in 
information theoretic techniques 
 
– Aside: 

• Claude Shannon is considered the father of information 
theory 

 



Shannon-Fano Algorithm 
• Technique proposed in Shannon’s 1948 article. 

introducing the field of Information Theory: 
– A Mathematical Theory of Communication 

• Shannon, C.E. (July 1948). "A Mathematical Theory of 
Communication". Bell System Technical Journal 27: 379–423. 

 
• Method Attributed to Robert Fano, as published 

in a technical report 
– The transmission of information 

• Fano, R.M. (1949). "The transmission of information". 
Technical Report No. 65 (Cambridge (Mass.), USA: Research 
Laboratory of Electronics at MIT). 



Example: Shannon-Fano Algorithm 
Symbol A B C D E 

Count 15 7 6 6 5 



Example: Shannon-Fano Algorithm 
Symbol E B A D C 

Count 15 7 6 6 5 

Step 1: Sort the symbols by frequency/probability 
As shown:       E     B     A     D    C 



Example: Shannon-Fano Algorithm 
Symbol E B A D C 

Count 15 7 6 6 5 

Step 1: Sort the symbols by frequency/probability 

Step 2: Recursively divide into 2 parts 
 Each with about same number of counts 

As shown:       E     B     A     D    C 

E     B     A     D    C 

Dividing between B and A  
results in 22 on the left and 17 on the right 
-- minimizing difference totals between groups 

This division means E and B codes start with 0 
                        and A D and C codes start with 1 



Example: Shannon-Fano Algorithm 
Symbol E B A D C 

Count 15 7 6 6 5 

Step 1: Sort the symbols by frequency/probability 

Step 2: Recursively divide into 2 parts 
 Each with about same number of counts 

As shown:       E     B     A     D    C 

E     B     A     D    C 

Dividing between B and A  
results in 22 on the left and 17 on the right 
-- minimizing difference totals between groups 

This division means E and B codes start with 0 
                        and A D and C codes start with 1 

E     B     A     D    C 
E and B are then divided (15:7) 
A is divided from D and C (6:11) 

So E is leaf with code 00, 
      B is a leaf with code 01 
      A is a leaf with code 10 
D and C need divided again 



Example: Shannon-Fano Algorithm 
Symbol E B A D C 

Count 15 7 6 6 5 

Step 1: Sort the symbols by frequency/probability 

Step 2: Recursively divide into 2 parts 
 Each with about same number of counts 

As shown:       E     B     A     D    C 

E     B     A     D    C 

E     B     A     D    C 

So E is leaf with code 00, 
      B is a leaf with code 01 
      A is a leaf with code 10 
D and C need divided again 

Divide D and C (6:5) 

E     B     A     D    C 

D becomes a leaf with code 110 
C becomes a leaf with code 111 



Example: Shannon-Fano Algorithm 
Symbol E B A D C 

Count 15 7 6 6 5 

Step 1: Sort the symbols by frequency/probability 

Step 2: Recursively divide into 2 parts 
 Each with about same number of counts 

As shown:       E     B     A     D    C 

E     B     A     D    C 

E     B     A     D    C 

E     B     A     D    C 

Final Encoding: 

Symbol E B A D C 

Count 00 01 10 110 111 



Compression Methods 

next up 



Quick Summary: Huffman Algorithm 
• Encoding Summary 
Step 1: Initialization 
 Put all nodes in an OPEN list (keep it sorted at all times) 
 
Step 2: While OPEN list has more than 1 node 
 Step 2a: From OPEN pick 2 nodes having the lowest frequency/probability 
  Create a parent node for them 
 Step 2b: Assign the sum of the frequencies of the selected node 
  to their newly created parent 
 Step 2c: Assign code 0 to the left branch 
  Assign code 1 to the right branch 
  Remove the selected children from OPEN 
  (note the newly created parent node remains in OPEN) 
   



Observation 
• Some characters in the English alphabet occur more 

frequently than others 
– The table below is based on  

Robert Lewand's Cryptological Mathematics 



Huffman Encoding (English Letters) 
• Huffman encoding: Uses variable lengths for different 

characters to take advantage of their relative frequencies 
– Some characters occur more often than others 

• If those characters use < 8 bits each, the file will be smaller 
– Other characters may need > 8 bits 

• but that’s ok  they don’t show up often 



Huffman’s Algorithm 
• The idea: Create a “Huffman Tree” 

that will tell us a good binary 
representation for each character 
– Left means 0 
– Right means 1 

• Example 'b‘ is 10 
 

• More frequent characters will be 
higher in the tree (have a shorter 
binary value). 
 

• To build this tree,  
we must do a few steps first 
– Count occurrences of each unique 

character in the file to compress 
 

– Use a priority queue to order them 
from least to most frequent 
 

– Make a tree and use it 
 



Huffman Compression – Overview 
• Step 1 

– Count characters (frequency of characters in the message) 
 

• Step 2 
– Create a Priority Queue 

 
• Step 3 

– Build a Huffman Tree 
 

• Step 4 
– Traverse the Tree to find the Character to Binary Mapping 

 
• Step 5 

– Use the mapping to encode the message 



Step 1: Count Characters 

• Example message (input file) contents: 
ab ab cab 
– counts:  { '  ' = 2, 'b'=3, 'a' =3, 'c' =1, EOF=1 } 

 
 
 
 
 

– File size currently = 10 bytes = 80 bits 

file ends with an 
invisible EOF 
character 

byte 1 2 3 4 5 6 7 8 9 10 
char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF 
ASCII 97 98 32 97 98 32 99 97 98 256 
binary 01100001 01100010 00100000 01100001 01100010 00100000 01100011 01100001 01100010 N/A 



Step 2: Create a Priority Queue 
• Each node of the PQ is a tree 

– The root of the tree is the ‘key’ 
– The other internal nodes hold ‘subkeys’ 
– The leaves hold the character values 

 
• Insert each into the PQ using the PQ’s function 

– insertItem(count, character) 
 

• The PQ should organize them into ascending order 
– So the smallest value is highest priority 

• We will use an example with the PQ implemented as an ordered list 
– But the PQ could be implemented in whatever way works best 

» could be a minheap, unordered list, or ‘other’ 



Step 2: PQ Creation, An Illustration 
• From step 1 we have 

– counts:  { '  ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 } 
• Make these into trees 
• Add the trees to a Priority Queue 

– Assume PQ is implemented as a sorted list 



Step 2: PQ Creation, An Illustration 
• From step 1 we have 

– counts:  { '  ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 } 
• Make these into trees 
• Add the trees to a Priority Queue 

– Assume PQ is implemented as a sorted list 
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EOF 
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c 
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2 

'  ' 



Step 2: PQ Creation, An Illustration 
• From step 1 we have 

– counts:  { '  ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 } 
• Make these into trees 
• Add the trees to a Priority Queue 

– Assume PQ is implemented as a sorted list 
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EOF 
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b 

2 

'  ' 



Step 3: Build the Huffman Tree 
• Aside: All nodes should be in the PQ 

• While PQ.size() > 1 
– Remove the two highest priority (rarest) nodes  

• Removal done using PQ’s removeMin() function 
– Combine the two nodes into a single node 

• So the new node is a tree with  
– root has key value = sum of keys of nodes being combined 
– left subtree is the first removed node 
– right subtree is the second removed node 

– Insert the combined node back into the PQ 
• end While 

 
• Remove the one node from the PQ 

– This is the Huffman Tree 



Step 3a: Building Huffman Tree, Illus. 
• Remove the two highest priority (rarest) nodes 
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'  ' 



Step 3b: Building Huffman Tree, Illus. 
• Combine the two nodes into a single node 
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Step 3c: Building Huffman Tree, Illus. 
• Insert the combined node back into the PQ 
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EOF 
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Step 3d: Building Huffman Tree, Illus. 
• PQ has 4 nodes still, so repeat 
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Step 3a: Building Huffman Tree, Illus. 
• Remove the two highest priority (rarest) nodes 
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Step 3b: Building Huffman Tree, Illus. 
• Combine the two nodes into a single node 
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Step 3c: Building Huffman Tree, Illus. 
• Insert the combined node back into the PQ 
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Step 3d: Building Huffman Tree, Illus. 
• 3 nodes remain in PQ, repeat again 
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Step 3a: Building Huffman Tree, Illus. 
• Remove the two highest priority (rarest) nodes 
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Step 3b: Building Huffman Tree, Illus. 
• Combine the two nodes into a single node 
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Step 3c: Building Huffman Tree, Illus. 
• Insert the combined node back into the PQ 
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Step 3d: Building Huffman Tree, Illus. 
• 2 nodes still in PQ, repeat one more time 
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Step 3a: Building Huffman Tree, Illus. 
• Remove the two highest priority (rarest) nodes 
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Step 3b: Building Huffman Tree, Illus. 
• Combine the two nodes into a single node 
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Step 3c: Building Huffman Tree, Illus. 
• Insert the combined node back into the PQ 
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Step 3d: Building Huffman Tree, Illus. 
• Only 1 node remains in the PQ, so while loop ends 
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Step 3: Building Huffman Tree, Illus. 
• Huffman tree is complete 
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Step 4: Traverse Tree to Find the Character to Binary Mapping 

• '  '      = 
• 'c'      = 
• EOF  = 
• 'b'      = 
• 'a'      = 
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Recall 
Left   is 0 
Right is 1 



Step 4: Traverse Tree to Find the Character to Binary Mapping 

• '  '      = 
• 'c'      = 
• EOF  = 
• 'b'      = 
• 'a'      = 
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Recall 
Left   is 0 
Right is 1 0 
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Step 4: Traverse Tree to Find the Character to Binary Mapping 

• '  '      = 
• 'c'      = 
• EOF  = 
• 'b'      = 
• 'a'      = 
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Left   is 0 
Right is 1 0 
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Step 4: Traverse Tree to Find the Character to Binary Mapping 

• '  '      = 
• 'c'      = 
• EOF  = 
• 'b'      = 
• 'a'      = 
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Step 4: Traverse Tree to Find the Character to Binary Mapping 

• '  '      = 
• 'c'      = 
• EOF  = 
• 'b'      = 
• 'a'      = 
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Step 4: Traverse Tree to Find the Character to Binary Mapping 

• '  '      = 
• 'c'      = 
• EOF  = 
• 'b'      = 
• 'a'      = 
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Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 
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'  ' 
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EOF 
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10 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 



Challenge: Encode the Message 

• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab file ends with an 
invisible EOF 
character 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 11 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 1110 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 111000 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 11100011 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 1110001110 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 111000111000 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 111000111000010 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 11100011100001011 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 1110001110000101110 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 1110001110000101110011 



Step 5: Encode the Message 
• '  '      =      00 
• 'c'      =    010 
• EOF  =    011 
• 'b'      =      10 
• 'a'      =      11 

 

• Example message (input file) contents: 

ab  ab  cab 

file ends with an 
invisible EOF 
character 

• 1110001110000101110011 
• Count the bits used = 22 bits 
• versus the 80 

• previously needed 

• File is almost ¼ the size 
• lots of savings 



Decompression 
• From the previous tree shown we now have the 

message characters encoded as: 
 
 

• Which compresses to bytes 3 like so: 
 
 
 

• How to decompress? 
• Hint: Lookup table is not the best answer,  

what is the first symbol?... 1=? or is it 11? or 111? or 1110? or… 

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF 

binary 11 10 00 11 10 00 010 11 10 011 

byte 1 2 3 
char a  b     a b     c   a    b  EOF 

binary 11 10 00 11 10 00 010 1 1 10 011 



Decompression via Tree 
• The tree is known to the recipient of the message 

• So use it 
 

• To identify symbols we will 
Apply the Prefix Property 
• No encoding A is the prefix of another encoding B 
• Never will have x011 and y011100110 



Decompression via Tree 
• Apply the Prefix Property 

• No encoding A is the prefix of another encoding B 
• Never will have x011 and y011100110 

 
• the Algorithm 

• Read each bit one at a time from the input 
• If the bit is 0 go left in the tree 
• Else if the bit is 1 go right 
• If you reach a leaf node 

• output the character at that leaf 
• and go back to the tree root 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 
• note: this is NOT the same message as the 

encryption just done (but the tree the is same) 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 
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Class Activity: Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 
• note: this is NOT the same message as the 

encryption just done (but the tree the is same) 

• Pause for students to complete 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 
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• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

1 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 
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EOF 
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• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 

1 b 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

1 b 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

1 b 

1 

a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 b a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 

1 

b a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 

1 

0 

b a c 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 b a c 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 b a c 

0 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c 1 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c 1 

1 

a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c 0 a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c 0 

1 

a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c 0 

1 

a 

0 

c 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c 1 b a c a c 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

1 

1 

b a c a c a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 b a c a c a 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 b a c a c a 

1 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

0 b a c a c a 

1 

1 

EOF 



Decompressing Example 
• Say the encrypted message was: 

• 1011010001101011011 

2 

'  ' 

1 

EOF 

1 

c 

2 

4 

3 

b 

3 

a 

6 

10 

• Read each bit one at a time 
 

• If it is 0 go left 
• If it is 1 go right 

 
• If you reach a leaf, output the 

character there and go back to 
the tree root 

b a c a c a EOF 



Compression Methods 

up next:  ONE MORE EXAMPLE 



Lempel-Ziv-Welch (LZW) Compression 

• Lossless 
• Has a table 
• Does not store the table 



LZW Compression 

• Discovers and remembers patterns of colors  
• Stores the patterns in a table  

– BUT only table indices are stored in the file  

 
• LZW table entries can grow arbitrarily long,  

– So one table index can stand for a long string of 
data in the file  

– BUT again the table itself never needs to be stored 
in the file 

 



LZW Encoder: Pseudocode 

From Chapter 3 of 
MIT 6.02 DRAFT Lecture Notes, Feb 13, 2012 

RGB = 3 bytes 
but idea stays same 



LZW Decoder: Pseudocode 

From Chapter 3 of 
MIT 6.02 DRAFT Lecture Notes, Feb 13, 2012 

RGB = 3 bytes 
but idea stays same 

ry 



Questions? 
• Beyond D2L 

– Examples and information 
can be found online at: 

• http://docdingle.com/teaching/cs.html 
 

 
 
 
 

• Continue to more stuff as needed 



Extra Reference Stuff Follows 
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• Much of the content derived/based on slides  

for use with the book: 
– Digital Image Processing, Gonzalez and Woods 

 
• Some layout and presentation style derived/based  

on presentations by 
– Donald House, Texas A&M University, 1999 
– Bernd Girod, Stanford University, 2007 
– Shreekanth Mandayam, Rowan University, 2009 
– Igor Aizenberg, TAMUT, 2013 
– Xin Li, WVU, 2014 
– George Wolberg, City College of New York, 2015 
– Yao Wang and Zhu Liu, NYU-Poly, 2015 
– Sinisa Todorovic, Oregon State, 2015 
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