Digital Image Processing

Image Compression

Caution:
The PDF version of this presentation will appear to have errors due to heavy use of animations

Lecture Objectives

- Previously
- Filtering
- Interpolation Image Manipulation
- Warping
- Morphing
- Today
- Image Compression

Definition: File Compression

- Compression: the process of encoding information in fewer bits
- Wasting space is bad, so compression is good
- Image Compression
- Redundant information in images
- Identical colors
- Smooth variation in light intensity
- Repeating texture

Identical Colors

Mondrian's Composition 1930

Smooth Variation in Light Intensity

Digital rendering using Autodesk VIZ. (Image Credit: Alejandro Vazquez.)

Repeating Texture

Alvar Aalto Summer House 1953

What is Compression Really?

- Works because of data redundancy
- Temporal
- In 1D data, 1D signals, Audio...
- Spatial
- correlation between neighboring pixels or data items
- Spectral
- correlation between color or luminescence components
- uses the frequency domain to exploit relationships between frequency of change in data
- Psycho-visual
- exploits perceptual properties of the human (visual) system

Two General Types

- Lossless Compression
- data is compressed and can be uncompressed without loss of detail or information
- bit-preserving
- reversible
- Lossy Compression
- purpose is to obtain the best possible fidelity for a given bit-rate
- or minimizing the bit-rate to achieve a given fidelity measure
- Video and audio commonly use lossy compression
- because humans have limited perception of finer details

Two Types

- Lossless compression often involves some form of entropy encoding
- based in information theoretic techniques
- see next slide for visual
- Lossy compression uses source encoding techniques that may involve transform encoding, differential encoding or vector quanatization
- see next slide for visual

Compression Methods

Compression Methods

Simple Lossless Compression

- Simple Repetition Suppression
- If a sequence contains a series of N successive tokens
- Then they can be replaced with a single token and a count of the number of times the token repeats
- This does require a flag to denote when the repeated token appears
- Example
- 123444444444
- can be denoted
- 123 fg
- where f is the flag for four

Run-length Encoding (RLE)

- RLE is often applied to images
- It is a small component used in JPEG compression
- Conceptually
- sequences of image elements $X_{1}, X_{2}, \ldots, X_{n}$ are mapped to pairs $\left(c_{1}, L_{1}\right),\left(c_{2}, L_{2}\right), \ldots,\left(c_{n}, L_{n}\right)$
- where c_{i} represent the image intensity or color
- and L_{i} the length of the $\mathrm{i}^{\text {th }}$ run of pixels

Run-Length Encoding (RLE): lossless

- Scanline: 222222234111
- Run-length encoding

$$
\left(\begin{array}{ll}
7 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
1
\end{array}\right)
$$

Run-Length Encoding (RLE): lossless

- Scanline: 222222234111
- Run-length encoding

25% reduction of memory use

RLE: worst case

- Scanline: 12345678

8 values

- Run-length encoding:

$$
(11)(12)(13)(14)(15)(16)(17)
$$

16 values
doubles space

RLE: Improving

- Scanline: 555555534111
- Run-length encoding need to flag this as meaning "not repeating"
(75)(234)(1)
(72) $\rightarrow 5555555$
(234) $\rightarrow 34$
the flag indicates that 2 explicitly given values follow
(3 1) $\rightarrow 111$
Using this improvement
The worst case then only adds 1 extra value

How to flag the repeat/no repeat?

- SGI Iris RGB Run-length Encoding Scheme

$128 \leq n \leq 255, n-128$ gives number of nonrepeating values that follow

Compression Methods

Compression: Pattern Substitution

- Pattern Substitution, lossless
- Simple form of statistical encoding
- Concept
- Substitute a frequently repeating pattern with a shorter code
- the shorter code(s) may be predefined by the algorithm being used or dynamically created

Table Lookup

- Table Lookup can be viewed as a Pattern Substitution Method
- Example
- Allow full range of colors (24 bit, RGB)
- Image only uses 256 (or less) unique colors (8 bits)
- Create a table of which colors are used
- Use 8 bits for each color instead of 24 bits
- Conceptually how older BMPs worked
» color depth <= 8 bits

Table Lookup: GIF

- Graphics Interchange File Format (GIF)
- uses table lookups \rightarrow Color LookUp Table (CLUT)

Figure 3.8: 8-Bit Color Framebuffer with 3 Lookup Tables

GIF Compression with Color LookUp Table (CLUT)

Example

Image Size = 1000×1000 256 colors
Each color 24 bit (RGB)
without CLUT
1000*1000*24 bits
with CLUT
1000*1000*8 bit (index data) + 3*256*8bit (table data)

Use about 2/3 the space (when image size is "big")

Compression: Pattern Substitution

- Table lookups work
- But Pattern Substitution typically is more dynamic
- Counts occurrence of tokens
- Sorts (say descending order)
- Assign highest counts shortest codes

Compression Methods

Lossless Compression: Entropy Encoding

- Lossless compression often involves some form of entropy encoding and are based in information theoretic techniques
- Aside:
- Claude Shannon is considered the father of information theory

Shannon-Fano Algorithm

- Technique proposed in Shannon’s 1948 article. introducing the field of Information Theory:
- A Mathematical Theory of Communication
- Shannon, C.E. (July 1948). "A Mathematical Theory of Communication". Bell System Technical Journal 27: 379-423.
- Method Attributed to Robert Fano, as published in a technical report
- The transmission of information
- Fano, R.M. (1949). "The transmission of information". Technical Report No. 65 (Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT).

Example: Shannon-Fano Algorithm

Symbol	A	B	C	D	E
Count	15	7	6	6	5

Example: Shannon-Fano Algorithm

Symbol	E	B	A	D	C
Count	15	7	6	6	5

Step 1: Sort the symbols by frequency/probability As shown:

Example: Shannon-Fano Algorithm

Symbol	E	B	A	D	C
Count	15	7	6	6	5

Step 1: Sort the symbols by frequency/probability
Step 2: Recursively divide into 2 parts
Each with about same number of counts
Dividing between B and A
results in 22 on the left and 17 on the right
-- minimizing difference totals between groups
This division means E and B codes start with 0 As shown:
 and $A D$ and C codes start with 1

Example: Shannon-Fano Algorithm

Symbol	E	B	A	D	C
Count	15	7	6	6	5

Step 1: Sort the symbols by frequency/probability
Step 2: Recursively divide into 2 parts
Each with about same number of counts
Dividing between B and A
results in 22 on the left and 17 on the right
-- minimizing difference totals between groups
This division means E and B codes start with 0 and $A D$ and C codes start with 1
E and B are then divided (15:7)
A is divided from D and $C(6: 11)$
So E is leaf with code 00,
 B is a leaf with code 01 A is a leaf with code 10
D and C need divided again

Example: Shannon-Fano Algorithm

Symbol	E	B	A	D	C
Count	15	7	6	6	5

Step 1: Sort the symbols by frequency/probability
Step 2: Recursively divide into 2 parts
Each with about same number of counts

> So E is leaf with code 00,
> B is a leaf with code 01
> A is a leaf with code 10
> D and C need divided again

Divide D and C (6:5)

D becomes a leaf with code 110
C becomes a leaf with code 111

Example: Shannon-Fano Algorithm

Symbol	E	B	A	D	C
Count	15	7	6	6	5

Step 1: Sort the symbols by frequency/probability
Step 2: Recursively divide into 2 parts
Each with about same number of counts

Final Encoding:

Symbol	E	B	A	D	C
Count	00	01	10	110	111

Compression Methods

Quick Summary: Huffman Algorithm

- Encoding Summary

Step 1: Initialization
Put all nodes in an OPEN list (keep it sorted at all times)
Step 2: While OPEN list has more than 1 node
Step 2a: From OPEN pick 2 nodes having the lowest frequency/probability Create a parent node for them
Step 2b: Assign the sum of the frequencies of the selected node to their newly created parent
Step 2c: Assign code 0 to the left branch Assign code 1 to the right branch Remove the selected children from OPEN (note the newly created parent node remains in OPEN)

Observation

- Some characters in the English alphabet occur more frequently than others
- The table below is based on Robert Lewand's Cryptological Mathematics

Letter	Relative frequency in the English language $\boldsymbol{-}$	
a	8.167%	
b	1.492%	
c	2.782%	
d	4.253%	
e	12.702%	
f	2.228%	
g	2.015%	
h	6.094%	
i	6.966%	
j	0.153%	
k	0.772%	
l	4.025%	
m	2.406%	

Letter	Relative frequency in the English language	
\mathbf{n}	6.749%	
$\mathbf{0}$	7.507%	
\mathbf{p}	1.929%	
\mathbf{q}	0.095%	
\mathbf{r}	5.987%	
\mathbf{s}	6.327%	
t	9.056%	
\mathbf{u}	2.758%	
\mathbf{v}	0.978%	
\mathbf{w}	2.360%	
\mathbf{x}	0.150%	
\mathbf{y}	1.974%	
z	0.074%	

Huffman Encoding (English Letters)

- Huffman encoding: Uses variable lengths for different characters to take advantage of their relative frequencies
- Some characters occur more often than others
- If those characters use < 8 bits each, the file will be smaller
- Other characters may need >8 bits
- but that's ok \rightarrow they don't show up often

Char	ASCII value	ASCII (binary)	Hypothetical Huffman
' '	32	00100000	10
'a'	97	01100001	0001
'b'	98	01100010	01110100
'c'	99	01100011	001100
'e'	101	01100101	1100
' z^{\prime}	122	01111010	00100011110

Huffman's Algorithm

- The idea: Create a "Huffman Tree" that will tell us a good binary representation for each character
- Left means 0
- Right means 1
- Example 'b' is 10
- More frequent characters will be higher in the tree (have a shorter binary value).
- To build this tree, we must do a few steps first
- Count occurrences of each unique character in the file to compress

- Use a priority queue to order them from least to most frequent
- Make a tree and use it

Huffman Compression - Overview

- Step 1
- Count characters (frequency of characters in the message)
- Step 2
- Create a Priority Queue
- Step 3
- Build a Huffman Tree
- Step 4
- Traverse the Tree to find the Character to Binary Mapping
- Step 5
- Use the mapping to encode the message

Step 1: Count Characters

- Example message (input file) contents: ab ab cab
file ends with an invisible EOF character
- counts: \{ ' ' = 2, 'b'=3, 'a' =3, 'c' =1, EOF=1 \}

byte	1	2	3	4	5	6	7	8	9	10
char	$' \mathrm{a}^{\prime}$	$' \mathrm{~b}^{\prime}$	$'$	$'$	$' \mathrm{a}^{\prime}$	$' \mathrm{~b}^{\prime}$	$'^{\prime}$	${ }^{\prime} \mathrm{c}^{\prime}$	${ }^{\prime} \mathrm{a}^{\prime}$	${ }^{\prime} \mathrm{b}^{\prime}$
ASCII	97	98	32	97	98	32	99	97	98	256
binary	01100001	01100010	00100000	01100001	01100010	00100000	01100011	01100001	01100010	N/A

- File size currently $=10$ bytes $=80$ bits

Step 2: Create a Priority Queue

- Each node of the PQ is a tree
- The root of the tree is the 'key'
- The other internal nodes hold 'subkeys'
- The leaves hold the character values
- Insert each into the PQ using the PQ's function
- insertltem(count, character)
- The PQ should organize them into ascending order
- So the smallest value is highest priority
- We will use an example with the PQ implemented as an ordered list
- But the PQ could be implemented in whatever way works best
» could be a minheap, unordered list, or 'other'

Step 2: PQ Creation, An Illustration

- From step 1 we have
- counts: \{' ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 \}
- Make these into trees
- Add the trees to a Priority Queue
- Assume PQ is implemented as a sorted list

Step 2: PQ Creation, An Illustration

- From ste

$$
\begin{aligned}
& \text { From ste } \\
& \text { - counts: }\left\{\begin{array}{ccc|c|c}
\mathbf{2} & \mathbf{3} & \mathbf{3} & \mathbf{1} & \mathbf{1} \\
\hline & 0-7, & \text { a }-7, c-t, \text { coF }=1\}
\end{array}\right.
\end{aligned}
$$

- Make the ' ' b a c eof
- Add the trees to a Priority Queue
- Assume PQ is implemented as a sorted list

Step 2: PQ Creation, An Illustration

- From step 1 we have
- counts: \{ ' ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 \}
- Make these into trees
- Add the trees to a Priority Queue
- Assume PQ is implemented as a sorted list

Step 3: Build the Huffman Tree

- Aside: All nodes should be in the $P Q$
- While PQ.size() > 1
- Remove the two highest priority (rarest) nodes
- Removal done using PQ’s removeMin() function
- Combine the two nodes into a single node
- So the new node is a tree with
- root has key value = sum of keys of nodes being combined
- left subtree is the first removed node
- right subtree is the second removed node
- Insert the combined node back into the PQ
- end While
- Remove the one node from the PQ
- This is the Huffman Tree

Step 3a: Building Huffman Tree, Illus.

- Remove the two highest priority (rarest) nodes

Step 3b: Building Huffman Tree, Illus.

- Combine the two nodes into a single node

Step 3c: Building Huffman Tree, Illus.

- Insert the combined node back into the PQ

Step 3d: Building Huffman Tree, Illus.

- PQ has 4 nodes still, so repeat

Step 3a: Building Huffman Tree, Illus.

- Remove the two highest priority (rarest) nodes

Step 3b: Building Huffman Tree, Illus.

- Combine the two nodes into a single node

3	3		
$\\|$	$\\|$		
\mathbf{b}	\mathbf{a}		

Step 3c: Building Huffman Tree, Illus.

- Insert the combined node back into the PQ

Step 3d: Building Huffman Tree, Illus.

- 3 nodes remain in PQ, repeat again

Step 3a: Building Huffman Tree, Illus.

- Remove the two highest priority (rarest) nodes

Step 3b: Building Huffman Tree, Illus.

- Combine the two nodes into a single node

Step 3c: Building Huffman Tree, Illus.

- Insert the combined node back into the PQ

Step 3d: Building Huffman Tree, Illus.

- 2 nodes still in PQ , repeat one more time

Step 3a: Building Huffman Tree, Illus.

- Remove the two highest priority (rarest) nodes

Step 3b: Building Huffman Tree, Illus.

- Combine the two nodes into a single node

Step 3c: Building Huffman Tree, Illus.

- Insert the combined node back into the PQ

Step 3d: Building Huffman Tree, Illus.

- Only 1 node remains in the PQ, so while loop ends

Step 3: Building Huffman Tree, Illus.

- Huffman tree is complete

Step 4: Traverse Tree to Find the Character to Binary Mapping

Step 4: Traverse Tree to Find the Character to Binary Mapping

$$
\text { - ' ' = } 00
$$

Step 4: Traverse Tree to Find the Character to Binary Mapping

Step 4: Traverse Tree to Find the Character to Binary Mapping

Step 4: Traverse Tree to Find the Character to Binary Mapping

• '	$=00$	
- ${ }^{\prime}$ '	010	
- EOF	$=011$	
- 'b'	$=10$	
- 'a'	$=$	

Step 4: Traverse Tree to Find the Character to Binary Mapping

- ' ' = 00
- ' C ' $=010$
- $\mathrm{EOF}=011$
- 'b' = 10
- 'a' = 11

Step 5: Encode the Message

file ends with an

- ' ' = 00
- 'c' = 010
- EOF = 011
- 'b' = 10
- 'a' = 11

Challenge: Encode the Message

- ' ' $=00$
- $E O F=011$
- 'b' = 10
- 'a' = 11
- Example message (input file) contents: ab ab cab
file ends with an
invisible EOF character

Step 5: Encode the Message

file ends with an invisible EOF

- ' ' $=00$
- Example message (input file) contents:
- 'c' = 010
- EOF = 011
ab ab cab
- 'b' $=10$
- 11

Step 5: Encode the Message

file ends with an invisible EOF

- ' ' $=00$
- Example message (input file) contents:
- 'c' $=010$
- EOF = 011
- 'b' $=10$
- 'a' = 11
- $11 \underline{10}$

Step 5: Encode the Message

file ends with an invisible EOF
character

- 'c' = 010 ab ab cab
- $\mathrm{EOF}=01 \mathrm{~L}$
- 'b' = 10
- 'a' = 1 .
- $11 \underline{1000}$

Step 5: Encode the Message

file ends with an invisible EOF

- ' ' $=00$
- Example message (input file) contents:
- 'c' $=010$
- $\mathrm{EOF}=011$
ab ab cab
- 'b' = 10
- 'a' = 11
- 11100011

Step 5: Encode the Message

file ends with an invisible EOF

- ' ' $=00$
- Example message (input file) contents:
- 'c' = 010
- EOF = 011 ab ab cab

- 1110001110

Step 5: Encode the Message

- ' ' $=00$ - Example message (input file) contents:
- 'c' $=010$ ab ab cab
- EOF = 011
- 'b' = 10
- 'a' = 11
- $11 \underline{1000111000}$

Step 5: Encode the Message

file ends with an invisible EOF

- ' ' $=00$ - Example message (input file) contents:
character
- 'c' $=010 \longleftarrow$ ab ab cab
- EOF = 011
- 'b' = 10
- 'a' = 11
- $11 \underline{1000111000010}$

Step 5: Encode the Message

file ends with an invisible EOF

- ' ' $=00$
- 'c' $=010$
- EOF = 011
- 'b' = 10
- 'a' = 11
- $11 \underline{100011100001011}$

Step 5: Encode the Message

file ends with an invisible EOF
character

- 'c' $=010$
- EOF = 011
- 'b' = 10
- 'a' = 11
- $11 \underline{10001110000101110}$

Step 5: Encode the Message

file ends with an invisible EOF
character

- 'c' $=010$
- EOF $=011$
- 'b' = 10
- 'a' = 11
- 1110001110000101110011

Step 5: Encode the Message

- ' ' = 00
- 'c' $=010$
- $\mathrm{EOF}=011$
- Example message (input file) contents:
ab ab cab
- 'b' = 10
- 'a' = 11
- 1110001110000101110011
- Count the bits used = 22 bits
- versus the 80
- previously needed
- File is almost $1 / 4$ the size
- lots of savings

Decompression

- From the previous tree shown we now have the message characters encoded as:

char	'a'	'b'	'	'a'	'b'	'	'c'	'a'	'b'	EOF
binary	11	10	00	11	10	00	010	11	10	011

- Which compresses to bytes 3 like so:

| byte | 1 | | 2 | 3 |
| :---: | :--- | :--- | :---: | :---: | :---: |
| char | a b \quad a | b \quad c \quad a | b EOF | |
| binary | $\underline{11} 10 \underline{00} \underline{11}$ | $\underline{10} \underline{00} \underline{010} \underline{1}$ | $\underline{10} \underline{011}$ | |

- How to decompress?
- Hint: Lookup table is not the best answer, what is the first symbol?... $1=$? or is it 11? or 111? or 1110? or...

Decompression via Tree

- The tree is known to the recipient of the message
- So use it
- To identify symbols we will Apply the Prefix Property
- No encoding A is the prefix of another encoding B
- Never will have $\mathrm{x} \boldsymbol{\rightarrow 0} 011$ and $\mathrm{y} \boldsymbol{\rightarrow} \mathbf{0 1 1 1 0 0 1 1 0}$

Decompression via Tree

- Apply the Prefix Property
- No encoding A is the prefix of another encoding B
- Never will have $\mathrm{x} \boldsymbol{\rightarrow 0 1 1}$ and $\mathrm{y} \boldsymbol{\mathrm { O }} \mathbf{0 1 1 1 0 0 1 1 0}$
- the Algorithm
- Read each bit one at a time from the input
- If the bit is 0 go left in the tree
- Else if the bit is 1 go right
- If you reach a leaf node
- output the character at that leaf
- and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011
- note: this is NOT the same message as the encryption just done (but the tree the is same)
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Class Activity: Decompressing Example

- Say the encrypted message was:

- 1011010001101011011

- note: this is NOT the same message as the encryption just done (but the tree the is same)
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root
- Pause for students to complete

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011
b
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

\mathbf{b}	\mathbf{a}	\mathbf{c}	

- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011 | \mathbf{b} | \mathbf{a} | \mathbf{c} | \mathbf{a} |
| :--- | :--- | :--- | :--- |
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011 | \mathbf{b} | \mathbf{a} | \mathbf{c} | | \mathbf{a} | \mathbf{c} |
| :--- | :--- | :--- | :--- | :--- | :--- |
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011 | \mathbf{b} | \mathbf{a} | \mathbf{c} | | \mathbf{a} | \mathbf{c} | \mathbf{a} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011 | \mathbf{b} | \mathbf{a} | \mathbf{c} | | \mathbf{a} | \mathbf{c} | \mathbf{a} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011

\mathbf{b}	\mathbf{a}	\mathbf{c}		\mathbf{a}	\mathbf{c}	\mathbf{a}	EOF

- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Decompressing Example

- Say the encrypted message was:
- 1011010001101011011 | \mathbf{b} | \mathbf{a} | \mathbf{c} | | \mathbf{a} | \mathbf{c} | \mathbf{a} | EOF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| And the file is now decoded | | | | | | | |
- Read each bit one at a time
- If it is 0 go left
- If it is 1 go right
- If you reach a leaf, output the character there and go back to the tree root

Compression Methods

Coding Techniques

up next: ONE MORE EXAMPLE

Lempel-Ziv-Welch (LZW) Compression

- Lossless
- Has a table
- Does not store the table

LZW Compression

- Discovers and remembers patterns of colors
- Stores the patterns in a table
- BUT only table indices are stored in the file
- LZW table entries can grow arbitrarily long,
- So one table index can stand for a long string of data in the file
- BUT again the table itself never needs to be stored in the file

LZW Encoder: Pseudocode

```
initialize TABLE[0 to 255] = code for individual bytes
STRING = get input symbol
while there are still input symbols:
    SYMBOL = get input symbol
    if STRING + SYMBOL is in TABLE:
        STRING = STRING + SYMBOL
    else:
        output the code for STRING
        add STRING + SYMBOL to TABLE
        STRING = SYMBOL
output the code for STRING
```


LZW Decoder: Pseudocode

```
initialize TABLE[0 to 255] = code for individual bytes
CODE = read next code from encoder
RGB = 3 bytes
STRING = TABLE[CODE]
output STRING
while there are still codes to receive:
    CODE = read next code from encoder
    if TABLE[CODE] is not defined: // needed because sometimes the
        ENTRY = STRING + STRING[0] // decoder may not yet have entry
    else:
        ENTRY = TABLE[CODE]
    output ENTRY
    add STRING+ENTRY[0] to TABLE
    STRING = ENTRY
```


Questions?

- Beyond D2L
- Examples and information can be found online at:
- http://docdingle.com/teaching/cs.html
- Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

- Much of the content derived/based on slides for use with the book:
- Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
- Donald House, Texas A\&M University, 1999
- Bernd Girod, Stanford University, 2007
- Shreekanth Mandayam, Rowan University, 2009
- Igor Aizenberg, TAMUT, 2013
- Xin Li, WVU, 2014
- George Wolberg, City College of New York, 2015
- Yao Wang and Zhu Liu, NYU-Poly, 2015
- Sinisa Todorovic, Oregon State, 2015

