
Brent M. Dingle, Ph.D. 2015
Game Design and Development Program
Mathematics, Statistics and Computer Science
University of Wisconsin - Stout

Image Compression

Digital Image Processing

Material in this presentation is largely based on/derived from
presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University

Caution:
 The PDF version of this
 presentation will appear
 to have errors due to heavy
 use of animations

Lecture Objectives

• Previously
– Filtering
– Interpolation
– Warping
– Morphing

• Today

– Image Compression

Image Manipulation
and Enhancement

Definition: File Compression

• Compression: the process of encoding
information in fewer bits
– Wasting space is bad, so compression is good

– Image Compression

• Redundant information in images
– Identical colors
– Smooth variation in light intensity
– Repeating texture

Identical Colors

Mondrian’s Composition 1930

Smooth Variation in Light Intensity

Digital rendering using Autodesk VIZ.
(Image Credit: Alejandro Vazquez.)

Repeating Texture

Alvar Aalto Summer House 1953

What is Compression Really?
• Works because of data redundancy

– Temporal
• In 1D data, 1D signals, Audio…

– Spatial
• correlation between neighboring pixels or data items

– Spectral
• correlation between color or luminescence components
• uses the frequency domain to exploit relationships between

frequency of change in data

– Psycho-visual
• exploits perceptual properties of the human (visual) system

Two General Types
• Lossless Compression

– data is compressed and can be uncompressed without
loss of detail or information

• bit-preserving
• reversible

• Lossy Compression

– purpose is to obtain the best possible fidelity for a
given bit-rate

• or minimizing the bit-rate to achieve a given fidelity measure
– Video and audio commonly use lossy compression

• because humans have limited perception of finer details

Two Types
• Lossless compression often involves some

form of entropy encoding
– based in information theoretic techniques

• see next slide for visual

• Lossy compression uses source encoding

techniques that may involve transform
encoding, differential encoding or vector
quanatization

• see next slide for visual

Compression Methods

Compression Methods

next up

Simple Lossless Compression
• Simple Repetition Suppression

– If a sequence contains a series of N successive tokens
– Then they can be replaced with a single token and a

count of the number of times the token repeats
• This does require a flag to denote when the repeated token

appears

– Example
• 123444444444
• can be denoted
• 123f9
• where f is the flag for four

Run-length Encoding (RLE)

• RLE is often applied to images
– It is a small component used in JPEG compression

• Conceptually
– sequences of image elements X1, X2,…,Xn are

mapped to pairs (c1, L1), (c2, L2),…,(cn, Ln)
• where ci represent the image intensity or color
• and Li the length of the ith run of pixels

Run-Length Encoding (RLE): lossless

• Scanline: 2 2 2 2 2 2 2 3 4 1 1 1

• Run-length encoding
 (7 2) (1 3) (1 4) (3 1)

12 values

8 values

Run-Length Encoding (RLE): lossless

• Scanline: 2 2 2 2 2 2 2 3 4 1 1 1

• Run-length encoding
 (7 2) (1 3) (1 4) (3 1)

12 values

8 values

run of
repeating values

repeat count pixel value

25% reduction of memory use

RLE: worst case

• Scanline: 1 2 3 4 5 6 7 8

• Run-length encoding:
 (1 1)(1 2)(1 3)(1 4)(1 5)(1 6)(1 7)

8 values

16 values

doubles space

RLE: Improving

• Scanline: 5 5 5 5 5 5 5 3 4 1 1 1

• Run-length encoding

 (7 5) (2 3 4)(3 1)

need to flag this as meaning “not repeating”

(7 2) 5 5 5 5 5 5 5

(2 3 4) 3 4
the flag indicates
that 2 explicitly given
values follow

(3 1) 1 1 1
Using this improvement
The worst case then only adds 1 extra value

How to flag the repeat/no repeat?

• SGI Iris RGB Run-length Encoding Scheme

Compression Methods

next up

Compression: Pattern Substitution

• Pattern Substitution, lossless

• Simple form of statistical encoding

• Concept
– Substitute a frequently repeating pattern with a

shorter code
• the shorter code(s) may be predefined by the algorithm

being used or dynamically created

Table Lookup

• Table Lookup can be viewed as a Pattern
Substitution Method

• Example
– Allow full range of colors (24 bit, RGB)
– Image only uses 256 (or less) unique colors (8 bits)
– Create a table of which colors are used

• Use 8 bits for each color instead of 24 bits
– Conceptually how older BMPs worked

» color depth <= 8 bits

Table Lookup: GIF
• Graphics Interchange File Format (GIF)

– uses table lookups Color LookUp Table (CLUT)

GIF Compression with Color LookUp Table (CLUT)

Example

Image Size = 1000x1000
256 colors
Each color 24 bit (RGB)

with CLUT
 1000*1000*8 bit (index data)
 + 3*256*8bit (table data)

without CLUT
 1000*1000*24 bits

Use about 2/3 the space
(when image size is “big”)

Compression: Pattern Substitution

• Table lookups work

• But Pattern Substitution typically is more
dynamic
– Counts occurrence of tokens
– Sorts (say descending order)
– Assign highest counts shortest codes

Compression Methods

next up

Lossless Compression: Entropy Encoding

• Lossless compression often involves some
form of entropy encoding and are based in
information theoretic techniques

– Aside:

• Claude Shannon is considered the father of information
theory

Shannon-Fano Algorithm
• Technique proposed in Shannon’s 1948 article.

introducing the field of Information Theory:
– A Mathematical Theory of Communication

• Shannon, C.E. (July 1948). "A Mathematical Theory of
Communication". Bell System Technical Journal 27: 379–423.

• Method Attributed to Robert Fano, as published

in a technical report
– The transmission of information

• Fano, R.M. (1949). "The transmission of information".
Technical Report No. 65 (Cambridge (Mass.), USA: Research
Laboratory of Electronics at MIT).

Example: Shannon-Fano Algorithm
Symbol A B C D E

Count 15 7 6 6 5

Example: Shannon-Fano Algorithm
Symbol E B A D C

Count 15 7 6 6 5

Step 1: Sort the symbols by frequency/probability
As shown: E B A D C

Example: Shannon-Fano Algorithm
Symbol E B A D C

Count 15 7 6 6 5

Step 1: Sort the symbols by frequency/probability

Step 2: Recursively divide into 2 parts
 Each with about same number of counts

As shown: E B A D C

E B A D C

Dividing between B and A
results in 22 on the left and 17 on the right
-- minimizing difference totals between groups

This division means E and B codes start with 0
 and A D and C codes start with 1

Example: Shannon-Fano Algorithm
Symbol E B A D C

Count 15 7 6 6 5

Step 1: Sort the symbols by frequency/probability

Step 2: Recursively divide into 2 parts
 Each with about same number of counts

As shown: E B A D C

E B A D C

Dividing between B and A
results in 22 on the left and 17 on the right
-- minimizing difference totals between groups

This division means E and B codes start with 0
 and A D and C codes start with 1

E B A D C
E and B are then divided (15:7)
A is divided from D and C (6:11)

So E is leaf with code 00,
 B is a leaf with code 01
 A is a leaf with code 10
D and C need divided again

Example: Shannon-Fano Algorithm
Symbol E B A D C

Count 15 7 6 6 5

Step 1: Sort the symbols by frequency/probability

Step 2: Recursively divide into 2 parts
 Each with about same number of counts

As shown: E B A D C

E B A D C

E B A D C

So E is leaf with code 00,
 B is a leaf with code 01
 A is a leaf with code 10
D and C need divided again

Divide D and C (6:5)

E B A D C

D becomes a leaf with code 110
C becomes a leaf with code 111

Example: Shannon-Fano Algorithm
Symbol E B A D C

Count 15 7 6 6 5

Step 1: Sort the symbols by frequency/probability

Step 2: Recursively divide into 2 parts
 Each with about same number of counts

As shown: E B A D C

E B A D C

E B A D C

E B A D C

Final Encoding:

Symbol E B A D C

Count 00 01 10 110 111

Compression Methods

next up

Quick Summary: Huffman Algorithm
• Encoding Summary
Step 1: Initialization
 Put all nodes in an OPEN list (keep it sorted at all times)

Step 2: While OPEN list has more than 1 node
 Step 2a: From OPEN pick 2 nodes having the lowest frequency/probability
 Create a parent node for them
 Step 2b: Assign the sum of the frequencies of the selected node
 to their newly created parent
 Step 2c: Assign code 0 to the left branch
 Assign code 1 to the right branch
 Remove the selected children from OPEN
 (note the newly created parent node remains in OPEN)

Observation
• Some characters in the English alphabet occur more

frequently than others
– The table below is based on

Robert Lewand's Cryptological Mathematics

Huffman Encoding (English Letters)
• Huffman encoding: Uses variable lengths for different

characters to take advantage of their relative frequencies
– Some characters occur more often than others

• If those characters use < 8 bits each, the file will be smaller
– Other characters may need > 8 bits

• but that’s ok they don’t show up often

Huffman’s Algorithm
• The idea: Create a “Huffman Tree”

that will tell us a good binary
representation for each character
– Left means 0
– Right means 1

• Example 'b‘ is 10

• More frequent characters will be
higher in the tree (have a shorter
binary value).

• To build this tree,
we must do a few steps first
– Count occurrences of each unique

character in the file to compress

– Use a priority queue to order them
from least to most frequent

– Make a tree and use it

Huffman Compression – Overview
• Step 1

– Count characters (frequency of characters in the message)

• Step 2
– Create a Priority Queue

• Step 3

– Build a Huffman Tree

• Step 4
– Traverse the Tree to find the Character to Binary Mapping

• Step 5

– Use the mapping to encode the message

Step 1: Count Characters

• Example message (input file) contents:
ab ab cab
– counts: { ' ' = 2, 'b'=3, 'a' =3, 'c' =1, EOF=1 }

– File size currently = 10 bytes = 80 bits

file ends with an
invisible EOF
character

byte 1 2 3 4 5 6 7 8 9 10
char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF
ASCII 97 98 32 97 98 32 99 97 98 256
binary 01100001 01100010 00100000 01100001 01100010 00100000 01100011 01100001 01100010 N/A

Step 2: Create a Priority Queue
• Each node of the PQ is a tree

– The root of the tree is the ‘key’
– The other internal nodes hold ‘subkeys’
– The leaves hold the character values

• Insert each into the PQ using the PQ’s function

– insertItem(count, character)

• The PQ should organize them into ascending order
– So the smallest value is highest priority

• We will use an example with the PQ implemented as an ordered list
– But the PQ could be implemented in whatever way works best

» could be a minheap, unordered list, or ‘other’

Step 2: PQ Creation, An Illustration
• From step 1 we have

– counts: { ' ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 }
• Make these into trees
• Add the trees to a Priority Queue

– Assume PQ is implemented as a sorted list

Step 2: PQ Creation, An Illustration
• From step 1 we have

– counts: { ' ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 }
• Make these into trees
• Add the trees to a Priority Queue

– Assume PQ is implemented as a sorted list

1

EOF

1

c

3

a

3

b

2

' '

Step 2: PQ Creation, An Illustration
• From step 1 we have

– counts: { ' ' = 2, 'b'=3, 'a'=3, 'c'=1, EOF=1 }
• Make these into trees
• Add the trees to a Priority Queue

– Assume PQ is implemented as a sorted list

1

EOF

1

c

3

a

3

b

2

' '

Step 3: Build the Huffman Tree
• Aside: All nodes should be in the PQ

• While PQ.size() > 1
– Remove the two highest priority (rarest) nodes

• Removal done using PQ’s removeMin() function
– Combine the two nodes into a single node

• So the new node is a tree with
– root has key value = sum of keys of nodes being combined
– left subtree is the first removed node
– right subtree is the second removed node

– Insert the combined node back into the PQ
• end While

• Remove the one node from the PQ

– This is the Huffman Tree

Step 3a: Building Huffman Tree, Illus.
• Remove the two highest priority (rarest) nodes

1

EOF

1

c

3

b

3

a

2

' '

Step 3b: Building Huffman Tree, Illus.
• Combine the two nodes into a single node

3

b

3

a

2

' '

1

EOF

1

c

2

Step 3c: Building Huffman Tree, Illus.
• Insert the combined node back into the PQ

3

b

3

a

2

' '

1

EOF

1

c

2

Step 3d: Building Huffman Tree, Illus.
• PQ has 4 nodes still, so repeat

3

b

3

a

2

' '

1

EOF

1

c

2

Step 3a: Building Huffman Tree, Illus.
• Remove the two highest priority (rarest) nodes

3

b

3

a

2

' '

1

EOF

1

c

2

Step 3b: Building Huffman Tree, Illus.
• Combine the two nodes into a single node

3

b

3

a

2

' '

1

EOF

1

c

2

4

Step 3c: Building Huffman Tree, Illus.
• Insert the combined node back into the PQ

3

b

3

a

2

' '

1

EOF

1

c

2

4

Step 3d: Building Huffman Tree, Illus.
• 3 nodes remain in PQ, repeat again

3

b

3

a

2

' '

1

EOF

1

c

2

4

Step 3a: Building Huffman Tree, Illus.
• Remove the two highest priority (rarest) nodes

3

b

3

a

2

' '

1

EOF

1

c

2

4

Step 3b: Building Huffman Tree, Illus.
• Combine the two nodes into a single node

3

b

3

a

2

' '

1

EOF

1

c

2

4

6

Step 3c: Building Huffman Tree, Illus.
• Insert the combined node back into the PQ

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

Step 3d: Building Huffman Tree, Illus.
• 2 nodes still in PQ, repeat one more time

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

Step 3a: Building Huffman Tree, Illus.
• Remove the two highest priority (rarest) nodes

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

Step 3b: Building Huffman Tree, Illus.
• Combine the two nodes into a single node

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

Step 3c: Building Huffman Tree, Illus.
• Insert the combined node back into the PQ

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

Step 3d: Building Huffman Tree, Illus.
• Only 1 node remains in the PQ, so while loop ends

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

Step 3: Building Huffman Tree, Illus.
• Huffman tree is complete

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

Step 4: Traverse Tree to Find the Character to Binary Mapping

• ' ' =
• 'c' =
• EOF =
• 'b' =
• 'a' =

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10
Recall
Left is 0
Right is 1

Step 4: Traverse Tree to Find the Character to Binary Mapping

• ' ' =
• 'c' =
• EOF =
• 'b' =
• 'a' =

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10
Recall
Left is 0
Right is 1 0

0

00

Step 4: Traverse Tree to Find the Character to Binary Mapping

• ' ' =
• 'c' =
• EOF =
• 'b' =
• 'a' =

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10
Recall
Left is 0
Right is 1 0

1

00

0

010

Step 4: Traverse Tree to Find the Character to Binary Mapping

• ' ' =
• 'c' =
• EOF =
• 'b' =
• 'a' =

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10
Recall
Left is 0
Right is 1 0

1

00

1

010

011

Step 4: Traverse Tree to Find the Character to Binary Mapping

• ' ' =
• 'c' =
• EOF =
• 'b' =
• 'a' =

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10
Recall
Left is 0
Right is 1 1

0

00

010

011
 10

Step 4: Traverse Tree to Find the Character to Binary Mapping

• ' ' =
• 'c' =
• EOF =
• 'b' =
• 'a' =

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10
Recall
Left is 0
Right is 1 1

1

00

010

011
 10

 11

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

Challenge: Encode the Message

• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab file ends with an
invisible EOF
character

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 11

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 1110

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 111000

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 11100011

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 1110001110

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 111000111000

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 111000111000010

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 11100011100001011

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 1110001110000101110

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 1110001110000101110011

Step 5: Encode the Message
• ' ' = 00
• 'c' = 010
• EOF = 011
• 'b' = 10
• 'a' = 11

• Example message (input file) contents:

ab ab cab

file ends with an
invisible EOF
character

• 1110001110000101110011
• Count the bits used = 22 bits
• versus the 80

• previously needed

• File is almost ¼ the size
• lots of savings

Decompression
• From the previous tree shown we now have the

message characters encoded as:

• Which compresses to bytes 3 like so:

• How to decompress?
• Hint: Lookup table is not the best answer,

what is the first symbol?... 1=? or is it 11? or 111? or 1110? or…

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF

binary 11 10 00 11 10 00 010 11 10 011

byte 1 2 3
char a b a b c a b EOF

binary 11 10 00 11 10 00 010 1 1 10 011

Decompression via Tree
• The tree is known to the recipient of the message

• So use it

• To identify symbols we will
Apply the Prefix Property
• No encoding A is the prefix of another encoding B
• Never will have x011 and y011100110

Decompression via Tree
• Apply the Prefix Property

• No encoding A is the prefix of another encoding B
• Never will have x011 and y011100110

• the Algorithm

• Read each bit one at a time from the input
• If the bit is 0 go left in the tree
• Else if the bit is 1 go right
• If you reach a leaf node

• output the character at that leaf
• and go back to the tree root

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011
• note: this is NOT the same message as the

encryption just done (but the tree the is same)

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

Class Activity: Decompressing Example
• Say the encrypted message was:

• 1011010001101011011
• note: this is NOT the same message as the

encryption just done (but the tree the is same)

• Pause for students to complete

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

1

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0

1 b

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

1 b

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

1 b

1

a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0 b a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0

1

b a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0

1

0

b a c

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0 b a c

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0 b a c

0

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c 1

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c 1

1

a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c 0 a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c 0

1

a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c 0

1

a

0

c

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c 1 b a c a c

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

1

1

b a c a c a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0 b a c a c a

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0 b a c a c a

1

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

0 b a c a c a

1

1

EOF

Decompressing Example
• Say the encrypted message was:

• 1011010001101011011

2

' '

1

EOF

1

c

2

4

3

b

3

a

6

10

• Read each bit one at a time

• If it is 0 go left
• If it is 1 go right

• If you reach a leaf, output the

character there and go back to
the tree root

b a c a c a EOF

Compression Methods

up next: ONE MORE EXAMPLE

Lempel-Ziv-Welch (LZW) Compression

• Lossless
• Has a table
• Does not store the table

LZW Compression

• Discovers and remembers patterns of colors
• Stores the patterns in a table

– BUT only table indices are stored in the file

• LZW table entries can grow arbitrarily long,

– So one table index can stand for a long string of
data in the file

– BUT again the table itself never needs to be stored
in the file

LZW Encoder: Pseudocode

From Chapter 3 of
MIT 6.02 DRAFT Lecture Notes, Feb 13, 2012

RGB = 3 bytes
but idea stays same

LZW Decoder: Pseudocode

From Chapter 3 of
MIT 6.02 DRAFT Lecture Notes, Feb 13, 2012

RGB = 3 bytes
but idea stays same

ry

Questions?
• Beyond D2L

– Examples and information
can be found online at:

• http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits
• Much of the content derived/based on slides

for use with the book:
– Digital Image Processing, Gonzalez and Woods

• Some layout and presentation style derived/based

on presentations by
– Donald House, Texas A&M University, 1999
– Bernd Girod, Stanford University, 2007
– Shreekanth Mandayam, Rowan University, 2009
– Igor Aizenberg, TAMUT, 2013
– Xin Li, WVU, 2014
– George Wolberg, City College of New York, 2015
– Yao Wang and Zhu Liu, NYU-Poly, 2015
– Sinisa Todorovic, Oregon State, 2015

	Digital Image Processing
	Lecture Objectives
	Definition: File Compression
	Identical Colors
	Smooth Variation in Light Intensity
	Repeating Texture
	What is Compression Really?
	Two General Types
	Two Types
	Compression Methods
	Compression Methods
	Simple Lossless Compression
	Run-length Encoding (RLE)
	Run-Length Encoding (RLE): lossless
	Run-Length Encoding (RLE): lossless
	RLE: worst case
	RLE: Improving
	How to flag the repeat/no repeat?
	Compression Methods
	Compression: Pattern Substitution
	Table Lookup
	Table Lookup: GIF
	GIF Compression with Color LookUp Table (CLUT)
	Compression: Pattern Substitution
	Compression Methods
	Lossless Compression: Entropy Encoding
	Shannon-Fano Algorithm
	Example: Shannon-Fano Algorithm
	Example: Shannon-Fano Algorithm
	Example: Shannon-Fano Algorithm
	Example: Shannon-Fano Algorithm
	Example: Shannon-Fano Algorithm
	Example: Shannon-Fano Algorithm
	Compression Methods
	Quick Summary: Huffman Algorithm
	Observation
	Huffman Encoding (English Letters)
	Huffman’s Algorithm
	Huffman Compression – Overview
	Step 1: Count Characters
	Step 2: Create a Priority Queue
	Step 2: PQ Creation, An Illustration
	Step 2: PQ Creation, An Illustration
	Step 2: PQ Creation, An Illustration
	Step 3: Build the Huffman Tree
	Step 3a: Building Huffman Tree, Illus.
	Step 3b: Building Huffman Tree, Illus.
	Step 3c: Building Huffman Tree, Illus.
	Step 3d: Building Huffman Tree, Illus.
	Step 3a: Building Huffman Tree, Illus.
	Step 3b: Building Huffman Tree, Illus.
	Step 3c: Building Huffman Tree, Illus.
	Step 3d: Building Huffman Tree, Illus.
	Step 3a: Building Huffman Tree, Illus.
	Step 3b: Building Huffman Tree, Illus.
	Step 3c: Building Huffman Tree, Illus.
	Step 3d: Building Huffman Tree, Illus.
	Step 3a: Building Huffman Tree, Illus.
	Step 3b: Building Huffman Tree, Illus.
	Step 3c: Building Huffman Tree, Illus.
	Step 3d: Building Huffman Tree, Illus.
	Step 3: Building Huffman Tree, Illus.
	Step 4: Traverse Tree to Find the Character to Binary Mapping
	Step 4: Traverse Tree to Find the Character to Binary Mapping
	Step 4: Traverse Tree to Find the Character to Binary Mapping
	Step 4: Traverse Tree to Find the Character to Binary Mapping
	Step 4: Traverse Tree to Find the Character to Binary Mapping
	Step 4: Traverse Tree to Find the Character to Binary Mapping
	Step 5: Encode the Message
	Challenge: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Step 5: Encode the Message
	Decompression
	Decompression via Tree
	Decompression via Tree
	Decompressing Example
	Class Activity: Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Decompressing Example
	Compression Methods
	Lempel-Ziv-Welch (LZW) Compression
	LZW Compression
	LZW Encoder: Pseudocode
	LZW Decoder: Pseudocode
	Questions?
	Extra Reference Stuff Follows
	Slide Number 117
	Credits

