Digital Image Processing

Stereo Images

DRAFT

Material in this presentation is largely based on/derived from presentations by: Sventlana Lazebnik, and Noah Snavely

Brent M. Dingle, Ph.D. Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout 2015

Lecture Objectives

- Previously
 - Image Manipulation and Enhancement
 - Filtering
 - Interpolation
 - Warping
 - Morphing
 - Image Compression
 - Image Analysis
 - Edge Detection
 - Smart Scissors
- Today
 - Stereo Images

Stereo Images, Relation

- Stereo Image Processing
 - Builds from previous topics
 - Requires methods derived from image manipulation and enhancement
 - Relates to feature detection and extraction
 - Relates to human stereoscopic vision
 - Useful in navigating 3D environments
 - i.e. computer vision for robots

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Mark Twain at Pool Table", no date, UCR Museum of Photography

Stereo Image Goal

- Given 2 images from different viewpoints
 - Compute the depth of each point in the image
 - Suggested Method
 - Perform the computation based on how much each pixel moves between the two images

Epipolar Geometry

• x2 - x1 = the disparity of pixel (x1, y1)

Two images captured by a purely horizontal translating camera (*rectified* stereo pair)

epipolar lines

Simple Stereo Algorithm

- For each epipolar line
 - For each pixel in the 'left' image
 - Compare it with every pixel in the same epipolar line of the 'right' image
 - Select the pixel with minimum cost match

Possible improvement: use matching windows instead of pixels

Window size

W = 3

W = 20

Effect of window size

- Smaller window
 - more detail
 - more noise
- Larger window
 - less noise
 - more detail

Better results with *adaptive window*

- T. Kanade and M. Okutomi, <u>A Stereo Matching</u> <u>Algorithm with an Adaptive Window: Theory and</u> <u>Experiment</u>, Proc. International Conference on Robotics and Automation, 1991.
- D. Scharstein and R. Szeliski. <u>Stereo matching with</u> <u>nonlinear diffusion</u>. International Journal of Computer Vision, 28(2):155-174, July 1998

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Ground truth

Results with window search

Window-based matching (best window size) Ground truth

Better methods exist...

State of the art method

Ground truth

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Stereo as Energy Minimization

- What defines a good stereo correspondence?
 - Match quality
 - Each pixel needs a good match in the other image
 - Smoothness
 - Two adjacent pixels in one image should move about the same amount

Stereo as Energy Minimization

- Find a disparity map d that minimizes an energy function: E(d)
- Simple pixel / window matching

$$E(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

 $C(x, y, d(x, y)) = \frac{\text{SSD distance between windows}}{I(x, y) \text{ and } J(x + d(x, y), y)}$

Stereo as energy minimization

J(x, y)

Stereo as energy minimization

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$d(x, y) = \underset{d'}{\operatorname{arg\,min}} C(x, y, d')$$

Stereo as energy minimization

• Better objective function

Stereo as energy minimization

$$E(d) = E_d(d) + \lambda E_s(d)$$
match cost: $E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$
smoothness $E_s(d) = \sum_{(p,q)\in\mathcal{E}} V(d_p,d_q)$
 \mathcal{E} : set of neighboring pixels
$$\mathcal{E}$$
state by: Note State to the set of the set

$$\begin{aligned} \text{Smoothness cost} \\ E_s(d) &= \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q) \\ \text{How do we choose V?} \\ V(d_p, d_q) &= |d_p - d_q| \\ L_1 \text{ distance} \\ V(d_p, d_q) &= \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases} \end{aligned}$$

Dynamic programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

 Can minimize this independently per scanline using dynamic programming (DP)

D(x, y, d) : minimum cost of solution such that d(x, y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \left\{ D(x - 1, y, d') + \lambda \left| d - d' \right| \right\}$$

Dynamic programming

• Finds "smooth" path through DPI from left to right

Dynamic Programming

Dynamic programming

• Can we apply this trick in 2D as well?

• No: $d_{x,y-1}$ and $d_{x-1,y}$ may depend on different values of $d_{x-1,y-1}$

Stereo as a minimization problem

$$E(d) = E_d(d) + \lambda E_s(d)$$

- The 2D problem has many local minima

 Gradient descent doesn't work well
- And a large search space
 - $-n \ge m$ image w/ k disparities has k^{nm} possible solutions
 - Finding the global minimum is NP-hard in general
- Good approximations exist...

Depth From Disparity

$$disparity = x - x' = \frac{baseline * f}{z}$$

Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Real-time stereo

<u>Nomad robot</u> searches for meteorites in Antartica <u>http://www.frc.ri.cmu.edu/projects/meteorobot/index.html</u>

- Used for robot navigation (and other tasks)
 - Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Questions?

- Beyond D2L
 - Examples and information can be found online at:
 - http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

- Much of the content derived/based on slides for use with the book:
 - Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
 - Donald House, Texas A&M University, 1999
 - Sventlana Lazebnik, UNC, 2010
 - Noah Snavely, Cornell University, 2012
 - Xin Li, WVU, 2014
 - George Wolberg, City College of New York, 2015
 - Yao Wang and Zhu Liu, NYU-Poly, 2015

Digital Image Warping

