Digital Image Processing

Segmentation

Material in this presentation is largely based on/derived from presentations by: Sventlana Lazebnik, and Noah Snavely

Brent M. Dingle, Ph.D. Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout 2015

Lecture Objectives

- Previously
 - Image Manipulation and Enhancement
 - Filtering
 - Interpolation
 - Warping
 - Morphing
 - Image Compression
 - Image Analysis
 - Edge Detection
 - Smart Scissors
 - Stereo Image Processing
- Today
 - Segmentation

Segmentation Relation

- Segmentation methods touch on and use many previous topics
 - Representation Methods
 - Manipulation Methods
 - Human Perception and Psychology

Segmentation Goals

- Group similar looking pixels together for efficiency of additional processing
 - Superpixels
 - Learning a classification model for segmentation, Ren and Malik, ICCV 2003.

Segmentation Goals

- Separate image into coherent objects
 - Berkeley segmentation database
 - http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image

segmentation

Gestalt Psychology

Human minds 'group' things
Our perception is affected by this behavior

• Find the dog

Gestalt Factors

These factors are intuitively obvious to humans BUT are difficult to code into a computer

Segmentation via Clustering

• Concept:

Cluster similar pixels/features together

K-Means Clustering

- K-means clustering is based on the intensity or color of pixels
 - Essentially is a vector quantization of the image attributes (intensity or color)
 - Notice the clusters need not be spatially localized

Image

Intensity-based clusters

Color-based clusters

Segmentation via Clustering

- Cluster similar pixels/features together
 - Color PLUS LOCATION

Cluster Color AND Location

• Clustering based on (r, g, b, x, y) values leads to greater spatial coherence

Summary: K-means Segmentation

- Good
 - Simple
 - Converges to local minimum of the error function
- Bad
 - Uses lots of memory
 - Human picks K
 - Sensitive to initialization
 - Sensitive to outliers
 - Only finds 'sphere-like' clusters

Summary: K-means Segmentation

- Good
 - Simple
 - Converges to local minimum of the error function

(A): Undesirable clusters

- Bad
 - Uses lots of memory
 - Human picks K
 - Sensitive to initialization
 - Sensitive to outliers
 - Only finds 'sphere-like' clusters

Questions So Far?

• Questions on K-Means Segmentation?

Mean Shift Clustering

 An advanced and versatile method of clusteringbased segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean Shift: A Robust Approach toward Feature Space Analysis, D. Comaniciu and P. Meer, PAMI 2002.

Mean Shift Algorithm

Seeks *modes* or local maxima of density in the feature space

image

Feature space (L*u*v* color values)

L = luminance u and v are spatial coordinates

Mean Shift Clustering

- Define Cluster as
 - all data points in the attraction basin of a mode
- Define Attraction Basin as
 - the region for which all trajectories lead to the same mode

Mean Shift Clustering / Segmentation

- Find Features (color, gradients, texture...)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end near the same 'peak' or mode

Example: Mean Shift Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean Shift Results (C1)

Mean Shift Results (C2)

Summary: Mean Shift

- Good
 - Does not assume spherical clusters
 - Takes a single parameter (window size)
 - Finds variable number of nodes
 - Robust outliers
- Bad
 - Output depends on window size
 - Computationally expensive
 - Does not scale well with dimension of feature space

Questions So Far?

• Questions on Mean Shift Clustering/Segmentation?

More Questions?

- Beyond D2L
 - Examples and information can be found online at:
 - http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

- Much of the content derived/based on slides for use with the book:
 - Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
 - Donald House, Texas A&M University, 1999
 - Sventlana Lazebnik, UNC, 2010
 - Noah Snavely, Cornell University, 2012
 - Xin Li, WVU, 2014
 - George Wolberg, City College of New York, 2015
 - Yao Wang and Zhu Liu, NYU-Poly, 2015

Digital Image Warping

