Digital Image Processing

Segmentation via Graphs

Material in this presentation is largely based on/derived from presentations by: Sventlana Lazebnik, and Noah Snavely

Brent M. Dingle, Ph.D. Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout

Lecture Objectives

- Previously
 - Image Manipulation and Enhancement
 - Filtering
 - Interpolation
 - Warping
 - Morphing
 - Image Compression
 - Image Analysis
 - Edge Detection
 - Smart Scissors
 - Stereo Image processing
 - Segmentation
- Today
 - Segmentation Graph Based

source: Noah Snavely

Recall: Image Segmentation

 Group similar looking pixels together for efficiency of additional processing

 Separate image into coherent objects

Recall: Stereo as a Minimization Prob

Related: Binary Segmentation

 Separate an image into foreground and background

Related: Binary Segmentation

Separate an image into foreground and background

User sketches some strokes on foreground and background

How do we classify the rest of the pixels based on those lines?

Binary Segmentation as Min Energy

- Define a labeling, L:
 - as an assignment of each pixel with a 0 or 1 label
 - background or foreground
- Problem:
 - Find the labeling that minimizes

$$E(L) = \underbrace{E_d(L)}_{\gamma} + \underbrace{\lambda E_s(L)}_{\gamma}$$
match cost smoothness cost

Goal: establish a function to measure how similar a pixel is to the foreground (or background)

$E(L) = E_d(L) + \lambda E_s(L)$

 $C(x, y, L(x, y)) = \begin{cases} \infty & \text{if } L(x, y) \neq \tilde{L}(x, y) \\ C'(x, y, L(x, y)) & \text{otherwise} \end{cases}$

C'(x,y,0): "distance" from pixel to background pixels C'(x,y,1): "distance" from pixel to foreground pixels

 $\tilde{L}(x,y)$

usually computed by creating a color model from user-labeled pixels

source: Noah Snavely

$E(L) = E_d(L) + \lambda E_s(L)$

C'(x,y,0)

C'(x, y, 1)

$E(L) = E_d(L) + \lambda E_s(L)$

Neighboring pixels should generally have the same labels

- Unless the pixels have very different intensities

$$E_s(L) = \sum_{\substack{\text{neighbors } (p,q) \\ w_{pq} = 10.0}} w_{pq} |L(p) - L(q)|$$

Solve with max flow / min cut

• Once all is in place

• We can solve

$$E(L) = E_d(L) + \lambda E_s(L)$$

using max flow / min cut algorithm

Graph min cut problem

 Given a weighted graph G with source and sink nodes (s and t), partition the nodes into two sets, S and T such that the sum of edge weights spanning the partition is minimized – and s ∈ S and t ∈ T

- Graph
 - node for each pixel, link between adjacent pixels
 - specify a few pixels as foreground and background
 - create an infinite cost link from each bg pixel to the *t* node
 - create an infinite cost link from each fg pixel to the *s* node
 - create finite cost links from *s* and *t* to each other node
 - compute min cut that separates s from t
 - The min-cut max-flow theorem [Ford and Fulkerson 1956]

Segmentation by min cut

- The partitions *S* and *T* formed by the min cut give the optimal foreground and background segmentation
- i.e., the resulting labels minimize

$$E(d) = E_d(d) + \lambda E_s(d)$$

Related / More info

- Grabcut
 - Rother et. al.,
 SIGGRAPH 2004
- Intelligent Scissors

 Mortensen et. al, SIGGRAPH 1995

Fully Automatic [Shi and Malik]

- Fully connected graph
 - Node for every pixel
 - Edge between every pair of pixels
 - or every pair of sufficiently close pixels
 - Each edge is weighted by the similarity (affinity) of the two nodes
 - Similarity is inversely proportional to difference in color and position

Segmentation by graph partitioning

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Measuring affinity

- Suppose we represent each pixel by a feature vector x, and define a distance function appropriate for this feature representation
- Then we can convert the distance between two feature vectors into an affinity with the help of a generalized Gaussian kernel:

$$\exp\left(-\frac{1}{2\sigma^2}\operatorname{dist}(\mathbf{x}_i,\mathbf{x}_j)^2\right)$$

Scale affects affinity

- Small σ : group only nearby points
- Large σ: group far-away points

Graph cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- Any graph cut gives us a segmentation
- Find a minimum cut
 - Gives us a "good" segmentation

Example: Minimum Cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Example: Minimum Cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Normalized cut

 Drawback: minimum cut tends to cut off very small, isolated components

Normalized Cuts

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch A

Interpretation as a Dynamical System

- Treat the links as springs and shake the system
 - elasticity proportional to cost
 - vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

Interpretation as a Dynamical System

- Treat the links as springs and shake the system
 - elasticity proportional to cost
 - vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

Color Image Segmentation

More Details: Normalized cut

- Let *W* be the adjacency matrix of the graph
- Let D be the diagonal matrix with diagonal entries $D(i, i) = \Sigma_j W(i, j)$
- Then the normalized cut cost can be written as

$$\frac{y^T(D-W)y}{T-W}$$

y' Dy where y is an indicator vector whose value should be 1 in the *i*th position if the *i*th feature point belongs to A and a negative constant otherwise

Normalized cut

- Finding the exact minimum of the normalized cut cost is NP-complete, but if we *relax y* to take on arbitrary values, then we can minimize the relaxed cost by solving the *generalized eigenvalue problem* $(D W)y = \lambda Dy$
- The solution y is given by the generalized eigenvector corresponding to the second smallest eigenvalue
- Intuitively, the *i*th entry of *y* can be viewed as a "soft" indication of the component membership of the *i*th feature
 - Can use 0 or median value of the entries as the splitting point (threshold), or find threshold that minimizes the Ncut cost

Normalized cut algorithm

- 1. Represent the image as a weighted graph G = (V,E), compute the weight of each edge, and summarize the information in D and W
- 2. Solve $(D W)y = \lambda Dy$ for the eigenvector with the second smallest eigenvalue
- 3. Use the entries of the eigenvector to bipartition the graph
- To find more than two clusters:
- Recursively bipartition the graph
- Run k-means clustering on values of several eigenvectors

Example result

Questions?

- Beyond D2L
 - Examples and information can be found online at:
 - http://docdingle.com/teaching/cs.html

• Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

- Much of the content derived/based on slides for use with the book:
 - Digital Image Processing, Gonzalez and Woods
- Some layout and presentation style derived/based on presentations by
 - Donald House, Texas A&M University, 1999
 - Sventlana Lazebnik, UNC, 2010
 - Noah Snavely, Cornell University, 2012
 - Xin Li, WVU, 2014
 - George Wolberg, City College of New York, 2015
 - Yao Wang and Zhu Liu, NYU-Poly, 2015

Digital Image Warping

