# Random Problems 3\_1 to 3\_3 for Finite Math Solutions and Hints

# by Brent M. Dingle

Problems based on sections from: <u>Finite Mathematics</u>, 7<sup>th</sup> Edition by S. T. Tan.

# DO NOT PRINT THIS OUT AND TURN IT IN **!!!!!!!!** This is designed to assist you in the event you get stuck. If you do not do the work you will NOT pass the tests.

### Section 3.1, 3.2 and 3.3:

**Problem 1:** Find the minimum and maximum for P = 5x + 2y subject to  $2x + 4y \ge 16$  $-x + 3y \ge 7$  $x \ge 0$  and  $y \ge 0$ Using the method of corners:

For the line 2x + 4y = 16: Let  $x = 0 \rightarrow y = 4$ , so one point is (0, 4)Let  $y = 0 \rightarrow x = 8$ , so another point is (8, 0)Draw a line through the points (0, 4) and (8, 0)Test the point (0,0) in the Equation  $2x + 4y \ge 16$ :  $3x + 4y \ge 16 \rightarrow 0 + 0 \ge 16$  which is false So the false side is below the line.

For the line -x + 3y = 7: Let  $x = 0 \rightarrow y = 7/3$ , so one point is (0, 7/3)Let  $y = 3 \rightarrow x = 2$ , so another point is (2, 3)Draw a line through the points (0, 7/3) and (2, 3)Test the point (0, 0) in the Equation  $-x + 3y \ge 7$   $-x + 3y \ge 7 \rightarrow 0 + 0 \ge 7$  which is false So the false side of the line is below the line For the line  $x \ge 0$ : The false side of this should obviously be everything left of the y-axis.

For the line  $y \ge 0$ :

The false side of this line should obviously be everything below the x-axis.

Your graph should look something like this: NOTE: I have shaded the TRUE side.



Now you must find the (?, ?) point which is the intersection of the two lines. So solve the system of equations:

Eq 1: 2x + 4y = 16Eq 2: -x + 3y = 7

Solve Eq 2 for y:  $-x + 3y = 7 \rightarrow 3y = 7 + x \rightarrow y = 7/3 + (1/3)x$ 

Substitute 7/3 + (1/3)x in for y into Eq 1: 2x + 4y = 16  $\rightarrow 2x + 4*(7/3 + (1/3)x) = 16$   $\rightarrow 2x + 21/3 + (4/3)x = 16$   $\rightarrow (10/3)x = 9$  $\rightarrow x = 27/10 = 2.7$ 

And put 2.7 in for x into Eq 2 and solve for y:  $-x + 3y = 7 \rightarrow -2.7 + 3y = 7$  $\rightarrow y = 97/30$ 

Now put your corner points into your objective function:

(0, 4) : 5x + 2y = 5\*0 + 2\*4 = 8(27/10, 97/30) :  $5x + 2y = 5*(27/10) + 2*(97/30) = 599/30 \approx 19.96666$  So (0, 4) would appear to yield the minimum value of 8.

However 19.9666 is NOT a maximum for consider that the top side of the graph is unbounded, so we can put 0 for x and 100 for y and get 5x + 2y = 0 + 200 = 200. And clearly 200 > 19.6666.

### So since the graph is unbounded at the top we say there is no maximum.

You may also want to consider what happens when we do not have the constraints as  $\leq$  or  $\geq$  but just < or just >. Can we use the corners of intersection then? You may want to ask your instructor about this.

Problem 2: Minimize P = 2x + 3y subject to  $5x + y \ge 20$   $x + y \ge 12$   $x + 3y \ge 18$  $x \ge 0, y \ge 0$ 

Using the Method of Corners.

For the line 5x + y = 20: Let x = 0 and solve for y gives y = 20. So one point is (0, 20)Let y = 0 and solve for x gives x = 4. So another point is (4, 0)So draw the line through the points. Test the point (0, 0) in the inequality:  $5x + y \ge 20$ Gives  $5*0 + 0 \ge 20 \rightarrow 0 \ge 20$  which is false So the false side is below the line.

For the line x + y = 12:

Let x = 0 gives y = 12. So one point is (0, 12)Let y = 0 gives x = 12. So another point is (12, 0)So draw the line through the points. Test the point (0, 0) in the inequality  $x + y \ge 12$ Gives  $0 + 0 \ge 12 \rightarrow 0 \ge 12$  which is false. So the false side is below the line.

For the line x + 3y = 18:

Let x = 0 gives y = 6. So one point is (0, 6)Let y = 0 gives x = 18. So another point is (18, 0)Draw the line through the points. Test the point (0, 0) in the inequality  $x + 3y \ge 18$ Gives  $) + 3*0 \ge 18 \rightarrow 0 \ge 18$  which is false So the false side is below the line.

Your graph should look like the below (note the TRUE side is shaded):



To find the point (?, ?) you need to solve the system: Eq 1: 5x + y = 20Eq 2: x + y = 12

So solve Eq 2 for  $y \rightarrow y = 12 - x$ . Sub 12 - x in for y into Eq 1:  $5x + y = 20 \rightarrow 5x + (12 - x) = 20$   $\rightarrow 4x = 8$  $\rightarrow x = 2$ 

Put x = 2 into Eq 2: x + y = 12  $\rightarrow$  2 + y = 12  $\rightarrow$  y = 10

So (?, ?) is really (2, 10)

To find the point (#, #) you need to solve the system:

Eq 1: x + 3y = 18Eq 2: x + y = 12So solve Eq 2 for  $y \rightarrow y = 12 - x$ . Sub 12 - x in for y into Eq 1:  $x + 3y = 18 \rightarrow x + 3^*(12 - x) = 18$ 

 $\Rightarrow x + 36 - 3x = 18$  $\Rightarrow -2x = -18$  $\Rightarrow x = 9$ 

Sub 9 in for x back into Eq 2:  $x + y = 12 \rightarrow 9 + y = 12 \rightarrow y = 3$ 

#### So the point (#, #) is really (9, 3)

Now to find our minimum of P = 2x + 3y we put in each corner point and calculate the value of P, the one that gives us the minimum value of P gives us our answer.

 $(0, 20) \rightarrow 2x + 3y = 60$   $(2, 10) \rightarrow 2x + 3y = 4 + 20 = 34$   $(9, 3) \rightarrow 2x + 3y = 18 + 9 = 27$  $(18, 0) \rightarrow 2x + 3y = 36$ 

## So the minimum value of 27 occurs at x = 9 and y = 3.

#### Problem 3:

Using the Method of Corners set up and solve the following linear programming problem:

A farmer raises only chickens and pigs. Each chicken produces \$6 in profit whereas each pig is worth \$20 in profit. The farmer wants to raise at most 16 animals. Further the farmer wishes to have at most 10 chickens. To raise each chicken costs the farmer \$5 and to raise each pig costs \$15. The farmer is restricted to spend at most \$180. How many of each animal should he raise if he wishes to maximize his profits?

Let x = number of chickens raised Let y = number of pigs raised

The objective function is profit, which we are to maximize. The profit from each chicken is \$6. The profit from each pig is \$20. So the total profit is: P = 6x + 20y

The total number of animals to be raised is at most 16, so our first constraint is: Con 1:  $x + y \le 16$ 

The farmer also wants at most 10 chickens, which gives the second constraint: Con 2:  $x \le 10$ 

And the farmer has only \$180 to spend. Each chicken costs \$5 to raise. Each pig costs \$15 to raise. So we get our third constraint: Con 3:  $5x + 15y \le 180$ 

And of course we cannot raise negative chickens or pigs so we get constraints 4 and 5:

Con 4:  $x \ge 0$ Con 5:  $y \ge 0$ So our total system is: Maximize P = 6x + 20y subject to  $x + y \le 16$   $x \le 10$  $5x + 15y \le 180$ 

Now we need to graph it and find the corners so we can find the maximal solution.

For the line x + y = 16: Let x = 0 and solve for  $y \rightarrow y = 16$ , so one point is (0, 16) Let y = 0 and solve for  $x \rightarrow x = 16$ , so another point is (16, 0) Draw the line through the points. Test the inequality  $x + y \le 16$  with the point (0, 0):  $0 + 0 \le 16 \rightarrow 0 \le 16$  is true So the true side is below the line.

For the line 5x + 15y = 180: Let x = 0 and solve for  $y \rightarrow y = 12$ , so one point is (0, 12)Let y = 0 and solve for  $x \rightarrow x = 36$ , so another point is (36, 0)Draw the line through the points.

Test the inequality  $5x + 15y \le 180$  with the point (0, 0)

 $0 + 0 \le 180 \rightarrow 0 \le 180$  is true

So the true side is below the line.

#### For $x \le 10$ :

 $x \ge 0, y \ge 0$ 

Clearly the true side of this is everything left of the vertical line x = 10.

For  $x \ge 0$ :

Clearly the true side is everything to the right of the y-axis (x = 0).

For  $y \ge 0$ :

This is obviously everything above the x-axis (y = 0).

So your graph should look something like: (*Note the below has the TRUE portion shaded*)



And now we need to find the point (?, ?) where 5x + 15y = 180 intersects x + y = 16. So solve the system:

Eq 1: 5x + 15y = 180Eq 2: x + y = 16

Solve Eq 2 for  $y \rightarrow x = 16 - y$ Substitute that in for x into Eq. 1:  $5x + 15y = 180 \rightarrow 5^*(16 - y) + 15y = 180$   $\rightarrow 80 - 5y + 15y = 180$   $\rightarrow 10y = 100$  $\rightarrow y = 10$ 

Put 10 in for y into Eq.2 and solve for x:  $x + y = 16 \rightarrow x + 10 = 16 \rightarrow x = 6$ 

So (?, ?) is really the point (6, 10).

Next we must find out what point (10, #) really is, or rather where x = 0 intersects x + y = 16.

So solve the system:

Eq 1: x + y = 16Eq 2: x = 10

Put 10 in for x into equation 1 and solve for y:  $x + y = 16 \rightarrow 10 + y = 16 \rightarrow y = 6$ 

So (10, #) is really (10, 6).

Now we have all our corner points. So we put them into our objective function: P = 6x + 20yAnd select the point which produces the largest result (as we are trying to maximize P).

| $(\mathbf{x}, \mathbf{y}) = \mathbf{point}$ | P = value of 6x + 20y           |
|---------------------------------------------|---------------------------------|
| (0, 0)                                      | 0                               |
| (0, 12)                                     | 0+20*12 = 240                   |
| (6, 10)                                     | <i>6*6</i> + <i>20*10</i> = 236 |
| (10, 6)                                     | <i>6*10+20*6</i> = 180          |
| (10, 0)                                     | 6*10 + 0*20 = 60                |

So the maximum profit is 240 at point (0, 12)

Thus we conclude:

The farmer will achieve a maximum profit of \$240 if he raises no chickens and 12 pigs.