Section 6.4 Notes

Permutations:

Definition:

Given a set of distinct objects, a permutation of the set is an arrangement of these objects in a definite order.

The number of permutations of n distinct objects taken r at a time is:
$P(n, r)=\frac{n!}{(n-r)!}$

Permutations of n Objects, not all distinct:
Given a set of n objects in which k_{1} objects are all alike, k_{2} objects are all alike, \ldots and k_{r} objects are all alike such that: $k_{1}+k_{2}+\ldots+k_{r}=n$,
then the number of permutations of these n objects taken n at a time is given by:
$\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!}$

Circular Arrangements:

The number of (different) circular arrangements of n distinct objects is $(n-1)$!

Combinations:

Definition:
The number of ways of selecting r objects from a set of n objects without regard to the order in which they are selected is a combination of the set.

The number of combinations of n objects taken r at a time is denoted:
$\mathrm{C}(n, r)$ or $\binom{n}{r}$
Either way, $\mathrm{C}(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
Combination example:
How many poker hands of 5 cards can be dealt from a standard deck of 52 cards?
Notice order does not matter.
$\mathrm{C}(52,5)=\frac{52!}{5!(52-5)!}=\frac{52!}{5!47!}=2,598,960$

