EXAM \#1A
MATH 142-Drost
4 points/problem

Name:
SS \# \qquad
Score: \qquad
\qquad 1. Find the domain of the function $f(x)=\sqrt{x^{2}-9}$
a) $(-\infty,-9],[9, \infty)$
b) $(-\infty,-3],[3, \infty)$
c) $[-3,3]$
d) $[-9,9]$
e) none of these
2. Given $f(x)$ and $g(x)$ as shown below: find $(f \circ g)(2)$
a) 0
b) 2
c) -2
d) -1
e) none of these

Questions 3-5 are all about Star Electronics, whose only product is TV's.
\qquad 3. Star Electronics has total costs of $\$ 180,000$ to produce 35 TV's. They have fixed costs of $\$ 106,500$. Find the cost equation given $\mathrm{x}=$ the number of TV's produced.
a) $C(x)=35 x+106,500$
b) $C(x)=35 x+180,000$
c) $C(x)=2100 x+180,000$
d) $C(x)=2100 x+106,500$
e) none of these
\qquad 4. Star Electronics sells all they produce at $\$ 2650$ each. Write a profit equation.
a) $P(x)=550 x-106,500$
b) $P(x)=550 x+106,500$
c) $P(x)=2650 x$
d) $P(x)=2650 x-180,000$
e) none of these
\qquad 5. Find the profit or loss when Star Electronics makes and sells 193 TV's.
a) loss of $\$ 200$
b) loss of $\$ 350$
c) profit of $\$ 200$
d) profit of $\$ 350$
e) none of these

Given the following data where $\mathrm{x}=$ the age of the child in years and $\mathrm{y}=$ the weight of the child (in pounds)

x	5	7	8	9	11	13	15
y	45	58	67	86	98	105	120

\qquad 6. Find the best fitting straight line and the correlation coefficient.
\qquad 7. What does this model predict the weight of the child will be at 10 yrs old? \qquad
\qquad 8. What does this model predict the age of the child is whose weight is 75 lbs? \qquad
9. Find the vertex of: $f(x)=2 x^{2}-12 x+5$
a) $(6,5)$
b) $(3,-13)$
c) $(2,-11)$
d) $(5,-5)$
e) none of these
10. Solve $8^{x}=16^{3+x}$
\qquad 11. Solve $\log _{2}\left(\log _{4} x\right)=0$
\qquad 12. Solve $2^{x}\left(x^{2}-x-2\right)=0$
13. Complete the square (showing all steps) for $f(x)=3 x^{2}+12 \alpha x+4 \beta$. Describe the graph of $f(x)$.

Problems 14-16: A local travel agent is offering travel packages to Omaha. The minimum number of Aggies is 400, and the maximum is 1200 . If 400 Aggies sign up, the cost if $\$ 800$ per student. The price per student is reduced 50 cents for each additional student over the 400 minimum.
14. Find the demand equation $p=m x+b$ where x is the number of Aggies on the trip.
15. Write the revenue equation.
16. How many people should they take to maximize revenue?
17. What is the effective yield for Bank A which offers 6% compounded weekly? (round your answer to 2 decimal places)
18. If $\$ 2500$ is invested at $6 \frac{3}{4} \%$ compounded monthly for seven years, what will the balance be (assuming no withdrawals)?
19. Which of the following are polynomials: \qquad
a) $f(x)=3 x^{2}+\pi x+7$
b) $g(x)=7 x-\frac{4}{x}$
c) $h(x)=3 x^{4}-2 x^{\frac{3}{2}}+5$
20. Describe the graph of $f(x)=\frac{1}{2}(x-A)^{2}+B$
21. True or False: $\log 3 x^{2}=2 \log 3 x$
_22. Find the difference quotient: $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}+x$
_23. $f(x)= \begin{cases}|x+1| & , x<0 \\ 2-4 x & , x \geq 0\end{cases}$

a) Graph the piecewise function $f(x)$
b) where is $f(x)$ increasing \qquad decreasing
24. Simplify: $\log _{3} 81-e^{2 \ln 3}+\log 1$
25. If $f(x)=\sqrt{3 x+1}$, find $f(x-2)$
26. Given $\mathrm{x}=$ the number of items produced, and $\mathrm{y}=$ the total costs of production.

Find the best-fitting model among: linear, quadratic, cubic, and exponential Which is the best model and why?

x	5	15	34	52	81
y	80	700	3850	6200	22400

