Texas A\&M University
 Mathematics 142
 Exam \#1
 October 2, 1997

Directions: (1) Put all your answers on the printed exam, and put the answers to \#1-10 in the answer blanks.
(2) Don't cheat.
(3) GIG 'EM AGS!

Problems 1-10 are worth 3 points each and problems 11-17 are worth 10 points each.
\qquad What is the slope of the line perpendicular to the line $y=\frac{1}{2} x-10$?
2.__ Consider $y=5 x-7$. If x decreases by 2 then what is the change in y ?
A. decreases by $10 ;$ B. increases by 10 ; C. increases by 14 ; D. decreases by 14 ; E. Cannot determine the answer
\qquad Suppose that $C(x)=7+5 x$ where $C(x)$ is the cost of producing x units of a product. What are the fixed costs?
4. \qquad Suppose we are given supply and demand curves $p=5.2 x$ and $p=$ $10.2-4.1 x$. Which one is the demand curve?
A. $p=5.2 x$ B. $p=10.2-4.1 x$
5. \qquad In $\# 4$, what is the equilibrium quantity x ? (Give 3 places after the decimal point.)
6. \qquad Find the value of x such that $x^{3}-4.1 x^{2}-5 x-7=0$. (Again, give to three decimal places.)
7. \qquad Suppose f is a function whose domain is the set of all real numbers and suppose f is zero exactly once, when $x=5$. For what value of x is the function $f(x-2)$ equal to zero?
8. \qquad $10^{\log 7}=?$
9. \qquad $\log _{6} 36^{\frac{2}{3}}=?$
10. \qquad If $f(x)=3^{x}$ and

$$
g(x)=\left\{\begin{array}{r}
x+1, \text { if } x \geq 0 \\
0, \text { if } x<0
\end{array}\right.
$$

what is $f \circ g(-2)$?
11. Suppose that the demand equation for a product is $p=10-2 x$, where p is price, x the quantity produced. Suppose that the fixed costs of producing the product are 5 and variable costs are 1 . What should x be in order to maximize profit?
12. Solve for $x:\left(\frac{1}{9}\right)^{x}=27$. Show how to find x without using your calculator.
13. Solve for $x: 10^{x-4}=3$. (You may use the calculator here.)
14. What is the domain of the function $f(x)=\frac{\sqrt{\log x}}{x-2}$?
15. I'm trying to get my parents to give me their 1972 Jeep. It cost $\$ 4000$ new, and let's suppose it was worth $\$ 2500$ in 1982. Assuming straight line depreciation, how much is the old heap worth in $1997 ?$
16. Suppose that a bank account has a nominal annual rate of 5% compounded quarterly. If the account is worth $\$ 5000$ in 5 years, how much was invested originally?
17. Do a quadratic regression on the following data:
$x \quad 0$
$\begin{array}{llll}0 & 4 & 5 & 7\end{array}$
$\begin{array}{lllll}y & 8 & 1 & -1 & 4\end{array}$
(a) Write down the "best fit" quadratic that you obtain from your calculator.
(b)Using this approximation, approximate the value of y if $x=6$.

