OPPORTUNITY TO EXCEL \# 2
MATH 142
Business Calculus - Spring 2002
Dr. Patrice Poage
VERSION A

SIGNATURE:

(name)

SS \#:

SECTION \#:

ROW \# YOU NORMALLY SIT IN:

ROW/SEAT \# YOU ARE IN RIGHT NOW:

- Check to see that you have 4 pages including the cover page.
- All 13 problems are to be done on the test paper. You must show work to receive full credit on a problem. Include any intermediate steps and programs/functions you use on your calculator. If you do the work in your head, you must turn in your head to receive partial credit.
- BOX all your answers!
- SCHOLASTIC DISHONESTY WILL NOT BE TOLERATED.

BOX ALL OF YOUR FINAL ANSWERS!!

1. (5 pts$)$ Using $E=-\frac{p}{x} \cdot \frac{d x}{d p}$, find the elasticity of demand for $x=\frac{10}{\sqrt{p}}$ at $p=2$.
2. (2 pts) Which of the following describes your answer for \#2 (circle your choice):
elastic inelastic unit elasticity
3. (4 pts each) Find the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{e^{x}-3}{2 e^{-x}+4}$
(b) $\lim _{x \rightarrow-\infty} \frac{7 x^{2}+5 x^{4}+2 x}{8 x^{3}+4 x-8}$
(c) $\lim _{x \rightarrow 16} \frac{-x+16}{\sqrt{x}-4}$
(d) $\lim _{x \rightarrow-\infty} \frac{2^{x}-8}{5+9^{x}}$
4. (6 pts) Suppose the demand of a commodity is given by $p(x)=e^{-2 x}$. Find the x value(s) where the marginal revenue is zero.
5. (6 pts) Given $f^{\prime}(x)=\frac{(x-2)^{2}(x+5)}{125}, f(2)=1, f(-2)=4, f(5)=\frac{3}{7}$ and $f(-5)=\frac{1}{5}$, determine all relative extremum for $f(x)$ (give answer in point (x, y) form).
6. (4 pts) If $V=\frac{4 \pi r^{3}}{5}+4^{2 r^{4}+1}$, find $\frac{d V}{d r}$ (do NOT simplify your answer).
7. Use the graph of $f(x)$, to the right, to answer the following questions:
(a) (3 pts) Find $\lim _{x \rightarrow 5^{-}} f(x)$
(b) (3 pts) At what x -value(s) does $f^{\prime}(x)$ not exist?
(c) (3 pts) At what x -value(s) does the limit of $f(x)$ not exist?

(d) (5 pts) Place the following derivatives in order from smallest to largest numerical value.
$f^{\prime}(-7), f^{\prime}(-2), f^{\prime}(0), f^{\prime}(4), f^{\prime}(6)$
smallest: \qquad
\qquad
\qquad , \qquad
8. (6 pts) Find the intervals for which $f(x)=x^{4}-32 x^{2}+20$ is concave up / concave down. Show all work. Round answers to 3 decimal places.
9. (6 pts) What three things should you ask yourself when determining whether or not a function, $f(x)$, is continuous at $x=a$?
10.
11.
12.
13. (5 pts) Find the equation of the tangent line (round to 2 decimal places) to $y=\frac{3}{x}+\frac{1}{2+x^{2}}$ at $\mathrm{x}=3$. HINT: To save time, find it on your calculator!
14. (5 pts each) Find the derivatives of the following functions. DO NOT SIMPLIFY AT ALL!
(a) $y=\sqrt[3]{\left(2 x^{4}\right)(4 x-\ln (5 x))}$
(b) $f(x)=2^{3 x}-\ln \left(\ln \left(x^{2}-5 x+\pi^{3}\right)\right)$
(c) $g(x)=\frac{(6 x)^{5}}{4 x^{2}+e^{5 x^{3}-x^{9}}}$
(d) $y=\sqrt{\sqrt{x}+1}-8 \ln (5)+\frac{1}{x^{4}}$
15. (9 pts) Sketch a possible graph of $f(x)$ (on the axis provided) based upon the following characteristics. Erase all other markings except your final answer.

- $f(2)=2$ and $f(4)=-2$
- x-intercepts at $-\frac{1}{2}, \frac{5}{2}$, and 5
- y-intercept at 2
- vertical asymptote at $x=-1$
- $f^{\prime}(1)=0, f^{\prime}(4)=0$
- $\lim _{x \rightarrow-\infty} f(x)=0$
- $\lim _{x \rightarrow \infty} f(x)=\infty$
- $f^{\prime}(x)<0$ on $(1,4)$
- $f^{\prime}(x)>0$ on $(-\infty,-1),(-1,1)$, and $(4, \infty)$
- $f^{\prime \prime}(x)<0$ on $(-1,1)$
- $f^{\prime \prime}(x)>0$ on $(-\infty,-1)$ and $(1, \infty)$

