Texas A\&M University
Mathematics 142, Section 507
Final Exam
December 17, 1997, 8:00 a.m.
Printed name: \qquad
Signature: \qquad
Student number: \qquad
Directions: Show all work for all questions. Don't erase anything unless you are SURE it's wrong.

1. Find $f^{\prime}(x)$ for each of the following. You need not simplify.
$f(x)=x^{2} e^{2 x}$
$f(x)=\frac{x^{2}+4 x}{x-7}$

$$
f(x)=\ln \left(4 x-x^{3}\right)
$$

2. Let $f(x, y)=x^{2} y+y^{2}+x y^{4}$. Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial x \partial y}$.
3. Compute:

$$
\int \frac{x^{4}}{x^{5}+5} d x
$$

4. Compute:

$$
\int \frac{e^{x}+e^{-x}}{e^{x}} d x
$$

Given the graph at right, state whether the following are true or false. If I can't read the answer, it's wrong, so you might want to write the whole words "true" and "false".
5. \qquad $f(2)$ exists
6. \qquad $f^{\prime}(2)$ exists
7. \qquad $\lim _{x \rightarrow 2}$ exists
8. \qquad f is continuous at 2
9. \qquad f has a relative maximum at $x=2$.
10. \qquad If f is continuous, $f^{\prime}(3)$ doesn't exist, $f^{\prime}(x)<0$ for $2<x<3$ and $f^{\prime}(x)>0$ for $3<x<4$ then which of the following must hold?
A. f has a relative maximum at $x=3$;
B. f has a relative minimum at $x=3$;
C. f has an inflection point at $x=3$;
D. f has neither a relative maximum nor a relative minimum at $x=3$;
E. Cannot conclude any of A,B,C,D.
11. \qquad If $f^{\prime}(3)=0$ and $f^{\prime \prime}(3)>0$ then which of the following must hold?
A. f has a relative maximum at $x=3$;
B. f has a relative minimum at $x=3$;
C. f has an inflection point at $x=3$;
D. Cannot conclude any of A,B,C.
12. \qquad Given the graph of $f(x)$, we obtain $f(x-2)$ by shifting f
A. up;
B. down;
C. to the right;
D. to the left.
13. Consider the following data set and give me the equation you get from a quadratic regression.

x	0	10	14	18	23
y	74	87	96	94	78

14. If $\log _{2}(2 x-6)=5$ then solve for x.
15. If $\frac{\partial f}{\partial x}(1,3)=0, \frac{\partial f}{\partial y}(1,3)=0, \frac{\partial^{2} f}{\partial x^{2}}(1,3)=-1$ and $\Delta(1,3)=2$, then which of the following must hold?
A. f has a relative maximum at $(1,3)$;
B. f has a relative minimum at $(1,3)$;
C. f has a saddle point at $(1,3)$;
D. Cannot conclude any of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
16. \qquad Suppose you invest $\$ 5000$ in each of 2 bank accounts. The first compounds quarterly at a nominal rate of $r=.05$ and the second compounds monthly at the rate $r=.04$. At the end of a year, which has more money in it?
A. the first;
B. the second;
C. both have the same;
D. can't tell.
17. Suppose $p=10-0.5 x$ is the demand and $p=0.5 x$ is the supply. Compute the consumer surplus.
18. Find the value of x such that $e^{x}=10.5-1.4 x$.
19. Suppose I have a function f such that $f^{\prime}(x)=(x-1)^{3}(2 x+1)^{2}(x+1)$. Find the critical points and state whether f has a relative maximum or minimum at each such critical point.
20. Suppose I have a function $f(x, y)$ and compute $f_{x}(x, y)=2 x-3 y+6$ and $f_{y}(x, y)=-3 x+y$. Find the critical points of f and state what conclusion you may draw about each such point from the Second Derivative Test.
21. Suppose you have a choice between two phone services, company A and company B. Company A charges $\$ 10$ in fixed costs per month and charges $\$ 0.15$ per minute on long distance calls at night. Company B charges $\$ 20$ per month in fixed costs and $\$.05$ per minute on night long distance calls. (So if you don't make any long distance calls, clearly A is a better deal. But if you make tons of long distance calls, B is a better deal.) Assuming you make all your long distance calls at night, how many minutes would you have to talk long distance per month in order for B to be cheaper?
