MATH 150 Sample Exam 2 Answer Key

Created Summer 2003
by
Brent M. Dingle

1. Given that $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{kx}+10$ and that $\mathrm{p}(\mathrm{x})$ divided by $(\mathrm{x}+3)$ has a remainder of 1 , find the value of k.
a. 0
b. 1
c. 3
d. 6
e. none of the above
2. What is the minimum of $f(x)=3 x^{2}+12 x+10$?
a. -3
b. -2
c. 2
d. 3
e. none of the above
3. Assume the rat population of a city grows exponentially at a rate of 8.5% per month. How long will it take for the population to triple?
a. $\quad 12.97$ months
b. $\mathbf{1 2 . 9 2}$ months
c. $\quad 16.78$ months
d. 16.72 months
e. More information is needed
4. $\log _{\mathrm{a}} 3=2, \log _{\mathrm{a}} 2=1.5, \log _{\mathrm{a}} 7=5$, find the $\log _{\mathrm{a}}\left(21 \mathrm{a}^{2} / 4\right)$
a. 3
b. 4
c. 5
d. 6
e. 10.5
5. Let p be directly proportional to x .

Let p be directly proportional to y^{2}.
Let p be inversely proportional to the cube root of z.
If $\mathrm{p}=2$ when $\mathrm{x}=4, \mathrm{y}=2$ and $\mathrm{z}=27$,
then what is p when $x=-3, y=1$ and $z=-7$?
a. 0.59
b. 2.03
c. 3.47
d. 4.28
e. none of the above
6. Solve $10^{-2 x+2}=100^{(x-3)(2 x-3)}$.
a. -3
b. 2
c. 3
d. 4
e. none of the above
7. If $f(x)=\left(x^{5}-3\right) / 2$, what does $f^{-1}(120)$ equal ?
a. 2
b. 3
c. 4
d. 5
e. None of the above
8. If you wanted to have $\$ 3000$ in 6 years, how much money would you need to place in an account that pays 6.8% annual interest compounded weekly?
a. $\quad 1768.12$
b. 1859.56
c. 1995.47
d. 2369.32
e. None of the above
9. What is the remainder of $x^{5}-3 x^{3}+5 x-1$ divided by $x-1$?
a. -4
b. -1
c. 2
d. 4
e. None of the above
10. Show that $f(x)=(2 x+5) /(3-x)$ is a on-to-one function.

Show if $f(a)=f(b)$ then $a=b$
Set: $(2 \mathrm{a}+5) /(3-\mathrm{a})=(2 \mathrm{~b}+5) /(3-\mathrm{b})$

$$
\begin{aligned}
(2 a+5)(3-b) \quad & =(2 b+5)(3-a) \\
6 a-2 a b+15-5 b & =6 b-2 a b+15-5 a \\
11 a & =11 b \\
a & =b
\end{aligned}
$$

So, $f(x)$ is a 1-1 function
11. Find the inverse of $(2 x+5) /(3-x)$.

$$
\begin{aligned}
& y=(2 x+5) /(3-x) \quad \text { interchange the } x^{\prime} s \text { and } y^{\prime} s \\
& x=(2 y+5) /(3-y) \\
& x(3-y)=2 y+5 \\
& 3 x-x y=2 y+5 \\
& 3 x-5=x y+2 y \\
& 3 x-5=(x+2) y \\
& (3 x-5) /(x+2)= \\
& (3 x)=f^{-1}(x)
\end{aligned}
$$

12. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-2 \mathrm{x}^{3}+2 \mathrm{x}^{2}-2 \mathrm{x}+1$.

How many positive real roots can $f(x)$ have?

$$
4,2 \text { or } 0
$$

How many negative real roots can $f(x)$ have?

$$
0
$$

How many complex roots can $f(x)$ have?

$$
0,2 \text { or } 4
$$

Show that $\mathrm{x}=1$ is a double root (a root of multiplicity 2) and find the other roots.

$$
\left(x^{4}-2 x^{3}+2 x^{2}-2 x+1\right) /(x-1)=x^{3}-x^{2}+x-1 \quad \text { (by synthetic division) }
$$

$$
\left(x^{3}-x^{2}+x-1\right) /(x-1)=x^{2}+1 \quad \text { (by synthetic division) }
$$

And you can use quadratic formula to find the 2 remaining roots of $x=i$ or $-i$.

