Special Products:

 

(x + y)2 = x2 + 2xy + y2

 

(x – y)2 = x2 – 2xy – y2

 

(x + y)3 = x3 + 3x2y + 3xy2 + y3

 

(x – y)3 = x3 – 3x2y + 3xy2 – y3

 

 

You may find looking up Pascal’s Triangle to be useful for multiplying out quantities raised to larger powers. For example (x + y)6.

 

 

Pascal’s Triangle:

1

1   2   1

1   3   3   1

1   4   6   4   1

1   5   10   10   5   1

1   6   15   20   15   6   1

1   7   21   35   35   21   7   1

 

From the above you should be able to discover

(x + y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

 

Notice the coefficients correspond to the numbers in the sixth row of Pascal’s triangle.