Section 1.3
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
2. $\left(3 x^{2}+x+1\right)-\left(2 x^{2}-3 x-5\right)$

$$
\begin{aligned}
& 3 x^{2}+x+1 \\
& -2 \mathrm{x}^{2}+3 \mathrm{x}+5 \\
& x^{2}+4 x+6
\end{aligned}
$$

8. $5(3 t-4)-\left(t^{2}+2\right)-2 t(t-3)$

$$
\begin{aligned}
& 0 t^{2}+15 t-20 \\
& -t^{2} \quad+0 t \quad-2 \\
& -2 t^{2}+6 t+0 \\
& -3 t^{2}+21 t-22
\end{aligned}
$$

19. $\left(2 x^{2}+3 y^{2}\right)^{2}$

$$
\begin{aligned}
\left(2 x^{2}+3 y^{2}\right) *\left(2 x^{2}+3 y^{2}\right) & =2 x^{2} * 2 x^{2}+2 x^{2} * 3 y^{2}+3 y^{2} * 2 x^{2}+3 y^{2} * 3 y^{2} \\
& =4 x^{4}+6 x^{2} y^{2}+6 y^{2} x^{2}+9 y^{4} \\
& =\mathbf{4} \mathbf{x}^{4}+\mathbf{1 2} \mathbf{x}^{2} \mathbf{y}^{2}+\mathbf{9} \mathbf{y}^{4}
\end{aligned}
$$

31. $\left(1+x^{4 / 3}\right)\left(1-x^{2 / 3}\right)$

$$
\begin{aligned}
\left(1+x^{4 / 3}\right)\left(1-x^{2 / 3}\right) & =1 * 1-1 * x^{2 / 3}+x^{4 / 3} * 1-x^{4 / 3} * x^{2 / 3} \\
& =1-x^{2 / 3}+x^{4 / 3}-x^{4 / 3+2 / 3} \\
& =1-x^{2 / 3}+x^{4 / 3}-x^{2} .
\end{aligned}
$$

48. Factor $6+5 t-6 t^{2}$
$\left(__{\sim}-\ldots \quad t\right)(\ldots+\ldots \quad t) \quad$ Use $a+$ and - because negative in front of t^{2}
(3 - \qquad t) $(2+$ \qquad t)

Guess which factors of 6 to use where
$(3-2 t)(2+3 t)$
Again guess and check for factors of 6 t
Multiply out gives:

$$
\begin{aligned}
(3-2 \mathrm{t})(2+3 \mathrm{t}) & =3 * 2+3 * 3 \mathrm{t}-2 \mathrm{t} * 2-2 \mathrm{t} * 3 \mathrm{t} \\
& =6+9 \mathrm{t}-4 \mathrm{t}-6 \mathrm{t}^{2} \\
& =6+5 \mathrm{t}-6 \mathrm{t}^{2}
\end{aligned}
$$

So (3-2t)(2+3t) is the answer.
57. Factor out completely: $(a+b)^{2}-(a-b)^{2}$

For this one it is best to multiply stuff out first:

$$
\begin{aligned}
(a+b)^{2}-(a-b)^{2} & =a^{2}+2 a b+b^{2}-\left(a^{2}-2 a b+b^{2}\right) \\
& =a^{2}+2 a b+b^{2}-a^{2}+2 a b-b^{2} \\
& =2 a b+2 a b \\
& =4 \mathbf{a b}
\end{aligned}
$$

66. Factor out completely: $27 a^{3}+b^{6}$

Notice $3^{3}=27$, so 3 a is likely to work somehow as is $b^{2}-$ as things will get cubed.
So try to divide out $\left(3 a+b^{2}\right)$ and see what happens.
You should get $9 a^{2}-3 a b^{2}+b^{4}-$ does this factor? No.
So the answer is: $\left(\mathbf{3 a}+\mathbf{b}^{\mathbf{2}}\right)\left(\mathbf{9} \mathbf{a}^{\mathbf{2}}-\mathbf{3 a b} \mathbf{b}^{\mathbf{2}}+\mathbf{b}^{\mathbf{4}}\right)$
79. Factor out completely: $x^{5 / 2}-x^{1 / 2}$

Take an $x^{1 / 2}$ out first.

$$
\begin{aligned}
x^{5 / 2}-x^{1 / 2} & =x^{1 / 2}\left(x^{4 / 2}-1\right) \\
& =x^{1 / 2}\left(x^{2}-1\right) \\
& =x^{1 / 2}(x-1)(x+1)
\end{aligned}
$$

86. Factor out completely: $\left(a^{2}+2 a\right)^{2}-2\left(a^{2}+2 a\right)-3$

You could multiply everything out and try it that way.
Instead I would
let $x=\left(a^{2}+2 a\right)$, so you get:

$$
\begin{aligned}
\left(\mathrm{a}^{2}+2 \mathrm{a}\right)^{2}-2\left(\mathrm{a}^{2}+2 \mathrm{a}\right)-3 & =\mathrm{x}^{2}-2 \mathrm{x}-3 \text { which is easier to factor } \\
& =(\mathrm{x}-3)(\mathrm{x}+1) \\
& \text { and put the }\left(a^{2}+2 a\right) \text { back in for } x \\
& =\left(\left(\mathrm{a}^{2}+2 \mathrm{a}\right)-3\right)\left(\left(\mathrm{a}^{2}+2 \mathrm{a}\right)+1\right) \\
& =\left(\mathrm{a}^{2}+2 \mathrm{a}-3\right)\left(\mathrm{a}^{2}+2 \mathrm{a}+1\right) \text { which both factor } \\
& =(\mathrm{a}-1)(\mathrm{a}+3)(\mathrm{a}+\mathbf{1})(\mathrm{a}+1)
\end{aligned}
$$

89. Factor out completely: $3(2 x-1)^{2}(2)(x+3)^{1 / 2}+(2 x-1)^{3}(1 / 2)(x+3)^{-1 / 2}$

Take out an $(x+3)^{1 / 2}$ and multiply the 3 and the 2

$$
=(\mathrm{x}+3)^{1 / 2} *\left[6(2 \mathrm{x}-1)^{2 *}(1)+(1 / 2)(2 \mathrm{x}-1)^{2}(2 \mathrm{x}-1)(\mathrm{x}+3)^{-1}\right]
$$

Take out a $(2 x-1)^{2}$

$$
=(x+3)^{1 / 2} *(2 x-1)^{2} *[6+(1 / 2)(2 x-1) /(x+3)]
$$

Get a common denominator

$$
\begin{aligned}
& =(\mathrm{x}+3)^{1 / 2} *(2 \mathrm{x}-1)^{2} *[6(\mathrm{x}+3)+(1 / 2)(2 \mathrm{x}-1)] /(\mathrm{x}+3) \\
& =(\mathrm{x}+3)^{1 / 2} *(2 \mathrm{x}-1)^{2} *[6 \mathrm{x}+18+\mathrm{x}-1 / 2] /(\mathrm{x}+3) \\
& =(\mathrm{x}+3)^{1 / 2} *(2 \mathrm{x}-1)^{2} *(7 \mathrm{x}+35 / 2) /(\mathrm{x}+3) \\
& =(\mathrm{x}+3)^{1 / 2} *(2 \mathrm{x}-1)^{2} *(7 \mathrm{x}+35 / 2) *(\mathrm{x}+3)^{-1} \\
& =(\mathrm{x}+\mathbf{3})^{-1 / 2} *(\mathbf{x}-\mathbf{1})^{2} *(\mathbf{x}+\mathbf{3 5 / 2})
\end{aligned}
$$

