Section 1.3 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

2.
$$(3x^{2} + x + 1) - (2x^{2} - 3x - 5)$$

$$3x^{2} + x + 1$$

$$-2x^{2} + 3x + 5$$

$$x^{2} + 4x + 6$$

8.
$$5(3t-4) - (t^2+2) - 2t(t-3)$$

 $0t^2 + 15t - 20$
 $-t^2 + 0t - 2$
 $-2t^2 + 6t + 0$
 $-3t^2 + 21t - 22$

19.
$$(2x^{2} + 3y^{2})^{2}$$

 $(2x^{2} + 3y^{2}) * (2x^{2} + 3y^{2}) = 2x^{2}*2x^{2} + 2x^{2}*3y^{2} + 3y^{2}*2x^{2} + 3y^{2}*3y^{2}$
 $= 4x^{4} + 6x^{2}y^{2} + 6y^{2}x^{2} + 9y^{4}$
 $= 4x^{4} + 12x^{2}y^{2} + 9y^{4}$

31.
$$(1 + x^{4/3})(1 - x^{2/3})$$

 $(1 + x^{4/3})(1 - x^{2/3}) = 1 \cdot 1 - 1 \cdot x^{2/3} + x^{4/3} \cdot 1 - x^{4/3} \cdot x^{2/3}$
 $= 1 - x^{2/3} + x^{4/3} - x^{4/3 + 2/3}$
 $= 1 - x^{2/3} + x^{4/3} - x^2$.

48. Factor $6 + 5t - 6t^2$

Use a + and – because negative in front of t^2
Guess which factors of 6 to use where
Again guess and check for factors of 6t

Multiply out gives:

(3-2t)(2+3t) = 3*2 + 3*3t - 2t*2 - 2t*3t $= 6 + 9t - 4t - 6t^{2}$ $= 6 + 5t - 6t^{2}$

So (3 - 2t)(2 + 3t) is the answer.

57. Factor out completely: $(a + b)^2 - (a - b)^2$

For this one it is best to multiply stuff out first:

$$(a + b)^{2} - (a - b)^{2} = a^{2} + 2ab + b^{2} - (a^{2} - 2ab + b^{2})$$

$$= a^{2} + 2ab + b^{2} - a^{2} + 2ab - b^{2}$$

$$= 2ab + 2ab$$

$$= 4ab$$

66. Factor out completely: $27a^3 + b^6$

Notice $3^3 = 27$, so 3a is likely to work somehow as is $b^2 - as$ things will get cubed.

So try to divide out $(3a + b^2)$ and see what happens.

You should get $9a^2 - 3ab^2 + b^4 - does this factor?$ No.

So the answer is: $(3a + b^2) (9a^2 - 3ab^2 + b^4)$

79. Factor out completely: $x^{5/2} - x^{1/2}$

Take an
$$x^{1/2}$$
 out first.
 $x^{5/2} - x^{1/2} = x^{1/2} (x^{4/2} - 1)$
 $= x^{1/2} (x^2 - 1)$
 $= x^{1/2} (x - 1) (x + 1)$

86. Factor out completely: $(a^2 + 2a)^2 - 2(a^2 + 2a) - 3$

You could multiply everything out and try it that way. Instead I would let $x = (a^2 + 2a)$, so you get:

$$(a^{2} + 2a)^{2} - 2(a^{2} + 2a) - 3 = x^{2} - 2x - 3 \quad \text{which is easier to factor} = (x - 3)(x + 1) \\ and put the (a^{2} + 2a) back in for x \\ = ((a^{2} + 2a) - 3) ((a^{2} + 2a) + 1) \\ = (a^{2} + 2a - 3) (a^{2} + 2a + 1) \quad \text{which both factor} \\ = (a - 1)(a + 3) (a + 1)(a + 1)$$

89. Factor out completely: $3(2x-1)^{2}(2)(x+3)^{1/2} + (2x-1)^{3}(1/2)(x+3)^{-1/2}$

Take out an $(x+3)^{1/2}$ and multiply the 3 and the 2 = $(x+3)^{1/2} * [6(2x-1)^{2}*(1) + (1/2)(2x-1)^{2}(2x-1)(x+3)^{-1}]$

Take out a $(2x - 1)^2$ = $(x + 3)^{1/2} * (2x - 1)^2 * [6 + (1/2)(2x - 1) / (x + 3)]$

Get a common denominator

$$= (x + 3)^{1/2} * (2x - 1)^{2} * [6(x + 3) + (1/2)(2x - 1)] / (x + 3)$$

= (x + 3)^{1/2} * (2x - 1)² * [6x + 18 + x - 1/2] / (x + 3)
= (x + 3)^{1/2} * (2x - 1)^{2} * (7x + 35/2) / (x + 3)
= (x + 3)^{1/2} * (2x - 1)^{2} * (7x + 35/2) * (x + 3)^{-1}
= (x + 3)^{-1/2} * (2x - 1)^{2} * (7x + 35/2)