Section 1.4 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

8. Simplify
$$(1 - x^2) / (x^3 - 1)$$

 $(1 - x^2) / (x^3 - 1)$
 $= [(1 - x)(1 + x)] / [(x - 1)(x^2 + x + 1)]$
 $= [-1*(x - 1)(1 + x)] / [(x - 1)(x^2 + x + 1)]$
 $= [-1*(1 + x)] / [(x^2 + x + 1)]$
 $= (-1 - x) / (x^2 + x + 1)$

22. Simplify [x / (x - 4)] - [3 / (x + 6)]Begin by getting a common denominator of (x - 4)(x + 6) $[x^*(x + 6) - 3^*(x - 4)] / [(x - 4)(x + 6)]$ $= (x^2 + 6x - 3x + 12) / [(x - 4)(x + 6)]$ $= x^2 + 3x + 12 / [(x - 4)(x + 6)]$

32. Simplify $[x / (x^2 + x - 2)] - [2 / (x^2 - 5x + 4)]$

First factor both denominators (to determine what common denominator to use).

$$x2 + x - 2 = (x - 1)(x + 2)x2 - 5x + 4 = (x - 1)(x - 4)$$

So the common denominator to use is: (x - 1)(x + 2)(x - 4)

$$[x / (x^{2} + x - 2)] - [2 / (x^{2} - 5x + 4)]$$

= [x*(x - 4) - 2*(x + 2)] / [(x - 1)(x + 2)(x - 4)]
= (x^{2} - 4x - 2x - 4) / [(x - 1)(x + 2)(x - 4)]
= (x^{2} - 6x - 4) / [(x - 1)(x + 2)(x - 4)]

48. Simplify [$(x + h)^{-3} - x^{-3}$] / h

$$[(x + h)^{-3} - x^{-3}] / h = [1 / (x + h)^{3} - 1/x^{3}] / h$$

= ([(x³ - (x + h)³] / [x³ * (x + h)³]) / h
= [(x³ - (x + h)^{3}] / [x³ * (x + h)^{3} + h]
= (x³ - x³ - 3x²h - 3xh² - h³) / [x³ * (x + h)^{3} + h]
= (-3x²h - 3xh² - h³) / [x³ * (x + h)^{3} + h]
= [h * (-3x² - 3xh - h²) / [x³ * (x + h)^{3} + h]
= (-3x² - 3xh - h²) / [x³ * (x + h)^{3}]

62. Rationalize the denominator: $\frac{y}{\sqrt{3} + \sqrt{y}}$

$$\frac{y}{\sqrt{3} + \sqrt{y}} * \frac{\sqrt{3} - \sqrt{y}}{\sqrt{3} - \sqrt{y}} = \frac{y * (\sqrt{3} - \sqrt{y})}{3 - y}$$