# Section 1.4 <br> Solutions and Hints 

by Brent M. Dingle

## for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.
8. Simplify $\left(1-x^{2}\right) /\left(x^{3}-1\right)$

$$
\begin{aligned}
\left(1-x^{2}\right) /\left(x^{3}-1\right) & =[(1-x)(1+x)] /\left[(x-1)\left(x^{2}+x+1\right)\right] \\
& =\left[-1^{*}(x-1)(1+x)\right] /\left[(x-1)\left(x^{2}+x+1\right)\right] \\
& =\left[-1^{*}(1+x)\right] /\left[\left(x^{2}+x+1\right)\right] \\
& =(-1-\mathbf{x}) /\left(\mathbf{x}^{2}+\mathbf{x}+\mathbf{1}\right)
\end{aligned}
$$

22. Simplify $[x /(x-4)]-[3 /(x+6)]$

Begin by getting a common denominator of $(x-4)(x+6)$

$$
\begin{aligned}
& {\left[x^{*}(x+6)-3 *(x-4)\right] /[(x-4)(x+6)]} \\
& =\left(x^{2}+6 x-3 x+12\right) /[(x-4)(x+6)] \\
& =x^{2}+3 x+12 /[(x-4)(x+6)]
\end{aligned}
$$

32. Simplify $\left[x /\left(x^{2}+x-2\right)\right]-\left[2 /\left(x^{2}-5 x+4\right)\right]$

First factor both denominators (to determine what common denominator to use).

$$
\begin{aligned}
& x^{2}+x-2=(x-1)(x+2) \\
& x^{2}-5 x+4=(x-1)(x-4)
\end{aligned}
$$

So the common denominator to use is: $(x-1)(x+2)(x-4)$

$$
\begin{aligned}
& {\left[x /\left(x^{2}+x-2\right)\right]-\left[2 /\left(x^{2}-5 x+4\right)\right]} \\
& =\left[x^{*}(x-4)-2^{*}(x+2)\right] /[(x-1)(x+2)(x-4)] \\
& =\left(x^{2}-4 x-2 x-4\right) /[(x-1)(x+2)(x-4)] \\
& =\left(x^{2}-6 x-4\right) /[(x-1)(x+2)(x-4)]
\end{aligned}
$$

48. Simplify $\left[(x+h)^{-3}-x^{-3}\right] / h$

$$
\begin{aligned}
{\left[(\mathrm{x}+\mathrm{h})^{-3}-\mathrm{x}^{-3}\right] / \mathrm{h} } & =\left[1 /(\mathrm{x}+\mathrm{h})^{3}-1 / \mathrm{x}^{3}\right] / \mathrm{h} \\
& =\left(\left[\left(\mathrm{x}^{3}-(\mathrm{x}+\mathrm{h})^{3}\right] /\left[\mathrm{x}^{3} *(\mathrm{x}+\mathrm{h})^{3}\right]\right) / \mathrm{h}\right. \\
& =\left[\left(\mathrm{x}^{3}-(\mathrm{x}+\mathrm{h})^{3}\right] /\left[\mathrm{x}^{3} *(\mathrm{x}+\mathrm{h})^{3} * \mathrm{~h}\right]\right. \\
& =\left(\mathrm{x}^{3}-\mathrm{x}^{3}-3 \mathrm{x}^{2} \mathrm{~h}-3 \mathrm{xh}^{2}-\mathrm{h}^{3}\right) /\left[\mathrm{x}^{3} *(\mathrm{x}+\mathrm{h})^{3} * \mathrm{~h}\right] \\
& =\left(-3 \mathrm{x}^{2} \mathrm{~h}-3 \mathrm{xh}^{2}-\mathrm{h}^{3}\right) /\left[\mathrm{x}^{3} *(\mathrm{x}+\mathrm{h})^{3} * \mathrm{~h}\right] \\
& =\left[\mathrm{h} *\left(-3 \mathrm{x}^{2}-3 \mathrm{xh}-\mathrm{h}^{2}\right) /\left[\mathrm{x}^{3} *(\mathrm{x}+\mathrm{h})^{3} * \mathrm{~h}\right]\right. \\
& =\left(-3 \mathrm{x}^{2}-3 \mathbf{x h}-\mathrm{h}^{2}\right) /\left[\mathrm{x}^{3} *(\mathrm{x}+\mathrm{h})^{3}\right]
\end{aligned}
$$

62. Rationalize the denominator: $\frac{y}{\sqrt{3}+\sqrt{y}}$

$$
\frac{y}{\sqrt{3}+\sqrt{y}} * \frac{\sqrt{3}-\sqrt{y}}{\sqrt{3}-\sqrt{y}}=\frac{y *(\sqrt{3}-\sqrt{y})}{3-y}
$$

