Section 1.5 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.
22. Solve by factoring: $x^{2}=5(x+100)$

$$
\begin{aligned}
x^{2}=5 x+500 \rightarrow & x^{2}-5 x-500=0 \\
& (x-25)(x+20)=0
\end{aligned}
$$

So $x=25$ or $x=-20$ is the solution
28. Solve by completing the square: $3 x^{2}-6 x-1=0$

Remember to take the leading coefficient of the x^{2} term out:

$$
\begin{aligned}
& 3\left(x^{2}-2 x+\right. \\
& 3\left(x^{2}-2 x+1\right)=1+1 \quad \text { Notice: }(-2 / 2)^{2}=1 \\
& 3(x-1)^{2}=2 \\
& (x-1)^{2}=2 / 3 \\
& (x-1)= \pm \sqrt{\frac{2}{3}} \\
& x=1 \pm \sqrt{\frac{2}{3}}
\end{aligned}
$$

75. Use the discriminant to determine the number of real solutions to: $x^{2}-6 x+1$

The discriminant $=b^{2}-4 \mathrm{ac}=(-6)^{2}-4 * 1 * 1=36-4=32$
$32>0$ so the equation has 2 distinct real solutions

84. A small appliance manufacturer finds that the profit \mathbf{P} (in dollars)

 generated by producing x microwave ovens per week is given by the formula: $P=0.1^{*} x^{*}(300-x)$ provided that $0 \leq x \leq 200$. How many microwave ovens must be manufactured per week to generate a profit of $\$ 1250.00$?Multiply everything out and set $=1250$, then solve for x .
$0.1 * x *(300-x)=1250$
$30 x-0.1 x^{2}=1250$
$0=0.1 \mathrm{x}^{2}-30 \mathrm{x}+1250$ (multiply everything by 10 , to get rid of decimal coeff)
$0=x^{2}-300 x+12500$
$0=(x-250)(x-50)$
So $\mathrm{x}=250$ or $\mathrm{x}=50$.
Notice the equation was only true for $0 \leq x \leq 200$.
And we arrive at the solution of $\mathbf{x}=\mathbf{5 0}$ ovens produces a profit of $\mathbf{\$ 1 2 5 0}$.

