Section 1.7
 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

48. Solve for x : $[3 /(x-1)]-[4 / x] \geq 1$

First notice that $x \neq 1$ and $x \neq 0$.
It is also EXTREMELY important to SUBRACT THE ONE - do not try to multiply stuff across the inequality - bad things happen (you would likely end with the result $x \in[-2,2]-$ which is wrong).

$$
\begin{aligned}
& \frac{3}{x-1}-\frac{4}{x}-1 \geq 0 \\
& \rightarrow \frac{3 * x-4 *(x-1)-(x-1) * x}{(x-1) * x} \geq 0 \\
& \rightarrow \frac{3 x-4 x+4-x^{2}+x}{(x-1) * x} \geq 0 \\
& \rightarrow \\
& \rightarrow \frac{4-x^{2}}{(x-1) * x} \geq 0
\end{aligned}
$$

And now some thinking is required.
First determine "where" interesting things might happen.
Obviously at $\mathrm{x}=1$ and $\mathrm{x}=0$ things might be odd (from the denominator)
And at $x^{2}=4$, or rather at $x=2$ and $x=-2$, odd things might happen (from numerator)
Now we check the signs of things on the intervals: $(-\infty,-2),(-2,0),(0,1),(1,2),(2, \infty)$

	$(-\infty,-2)$	$(-2,0)$	$(0,1)$	$(1,2)$	$(2, \infty)$
Sign of 4- x^{2}	-	+	+	+	-
Sign of $\mathrm{x}-1$	-	-	-	+	+
Sign of x	-	-	+	+	+

And we need the final sign to be positive. So $(-2,0)$ and $(1,2)$ are the only intervals that will work. Note at $x=-2$ and $x=2$ the equation's value is zero, so include those points.
Thus the final answer is $X \in[-2,0) \cup(1,2]$
Graphing it on the number line is left to you.
70. The gas mileage g (measured in miles per gallon) for a particular vehicle, driven at v miles per hour is given by the formula: $g=10+0.9 v-0.01 v^{2}$, as long as v is between $10 \mathrm{mi} / \mathrm{hr}$ and $75 \mathrm{mi} / \mathrm{hr}$. For what range of speeds is the vehicle's mileage 30 miles per gallon or better (i.e. $\mathbf{g} \geq \mathbf{3 0}$)

Start with	≥ 30	
and sub in the equation using v :		
$10+0.9 \mathrm{v}-0.01 \mathrm{v}^{2}$	≥ 30	solve for v
$-20+0.9 \mathrm{v}-0.01 \mathrm{v}^{2}$	≥ 0	
multiply by 100 to get rid of decimals		
$-2000+90 \mathrm{v}-\mathrm{v}^{2}$	≥ 0	
divide by $-1->$ notice the inequality changes		
$2000-90 \mathrm{v}+\mathrm{v}^{2}$	≤ 0	

Now factor $v^{2}-90 v+2000=(x-50)(x-40)$
And we create the signs table, wanting a negative sign when multiplied together (≤ 0)

	$[10,40)$	40	$(40,50)$	50	$(50,75]$
Sign of $x-40$	-	0	+	+	+
Sign of $x-50$	-	-	-	0	+

So the values that result in something equal 0 are 40 and 50 and the intervals resulting in something <0 are $(40,50)$

Thus the range of speeds is $[40,50]$
Thus we conclude: the vehicle gets $\mathbf{3 0}$ miles per gallon or better gas mileage at speeds from 40 mph to 50 mph (inclusive).
79. A gardener has a 120 feet of deer resistant fence. She wants to enclose a rectangular vegetable garden in her backyard and she wants the enclosed area o be at least 800 sq. feet. What range of values is possible for the length of her garden?

Let the length of the garden $=\mathrm{L}$ and the width $=\mathrm{W}$.
The perimeter is 120 feet so: $2 \mathrm{~L}+2 \mathrm{~W}=120$ or rather

$$
W=(120-2 L) / 2=60-L
$$

The area of the garden would be $\mathrm{L}^{*} \mathrm{~W}$ which must be ≥ 800
So $\quad L * W \geq 800$ and substitute $(60-L)$ in for W
$L^{*}(60-L) \geq 800$
$60 \mathrm{~L}-\mathrm{L}^{2}-800 \geq 0 \quad$ (divide by -1 and change inequality)
$\mathrm{L}^{2}-60 \mathrm{~L}+800 \leq 0 \quad$ (now factor)
$(\mathrm{L}-40)(\mathrm{L}-20) \leq 0$
So our $=0$ values are 20 and 40 . And we make our sign table wanting the result to be <0

	$(-\infty, 20)$	20	$(20,40)$	40	$(40, \infty)$
sign of $(\mathrm{L}-20)$	-	0	+	+	+
sign of $(\mathrm{L}-40)$	-	-	-	0	+

So the only interval producing $(\mathrm{L}-40)(\mathrm{L}-20)<0$ would be $(20,40)$ and we see that at 20 and 40 the value would $=0$. Thus we conclude:
The interval range for the length of her garden would be [$20 \mathrm{ft}, 40 \mathrm{ft}$].

