Section 1.7 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

48. Solve for x: $[3/(x-1)] - [4/x] \ge 1$

First notice that $x \neq 1$ and $x \neq 0$.

It is also EXTREMELY important to SUBRACT THE ONE – do not try to multiply stuff across the inequality – bad things happen (you would likely end with the result $x \in [-2, 2]$ – which is wrong).

$$\frac{3}{x-1} - \frac{4}{x} - 1 \ge 0$$

$$\Rightarrow \frac{3^* x - 4^* (x-1) - (x-1)^* x}{(x-1)^* x} \ge 0$$

$$\Rightarrow \frac{3x - 4x + 4 - x^2 + x}{(x-1)^* x} \ge 0$$

$$\Rightarrow \frac{4 - x^2}{(x-1)^* x} \ge 0$$

And now some thinking is required.

First determine "where" interesting things might happen.

Obviously at x = 1 and x = 0 things might be odd (from the denominator)

And at $x^2 = 4$, or rather at x = 2 and x = -2, odd things might happen (from numerator) Now we check the signs of things on the intervals: $(-\infty, -2)$, (-2, 0), (0, 1), (1, 2), $(2, \infty)$

	(-∞, -2)	(-2, 0)	(0, 1)	(1, 2)	(2,∞)
Sign of 4- x^2	-	+	+	+	-
Sign of x-1	-	-	-	+	+
Sign of x	-	-	+	+	+

And we need the final sign to be positive. So (-2, 0) and (1, 2) are the only intervals that will work. Note at x = -2 and x = 2 the equation's value is zero, so include those points. Thus the final answer is $x \in [-2, 0) \cup (1, 2]$

Graphing it on the number line is left to you.

70. The gas mileage g (measured in miles per gallon) for a particular vehicle, driven at v miles per hour is given by the formula: $g = 10 + 0.9v - 0.01v^2$, as long as v is between 10 mi/hr and 75 mi/hr. For what range of speeds is the vehicle's mileage 30 miles per gallon or better (i.e. $g \ge 30$)

Start with	g	≥ 30	and sub in the equation using v:
	$0.9 v - 0.01 v^2$		solve for v
-20 +	$-0.9v - 0.01 v^2$	≥ 0	multiply by 100 to get rid of decimals
-200	$0 + 90v - v^2$	≥ 0	divide by $-1 \rightarrow$ notice the inequality changes
2000	$0-90v + v^2$	≤ 0	

Now factor $v^2 - 90v + 2000 = (x - 50)(x - 40)$

And we create the signs table, wanting a negative sign when multiplied together (≤ 0)

	[10, 40)	40	(40, 50)	50	(50, 75]
Sign of $x - 40$	-	0	+	+	+
Sign of $x - 50$	-	-	-	0	+

So the values that result in something equal 0 are 40 and 50 and the intervals resulting in something < 0 are (40, 50)

Thus the range of speeds is [40, 50]

Thus we conclude: the vehicle gets 30 miles per gallon or better gas mileage at speeds from 40 mph to 50 mph (inclusive).

79. A gardener has a 120 feet of deer resistant fence. She wants to enclose a rectangular vegetable garden in her backyard and she wants the enclosed area o be at least 800 sq. feet. What range of values is possible for the length of her garden?

Let the length of the garden = L and the width = W.

The perimeter is 120 feet so: 2L + 2W = 120or rather W = (120 - 2L) / 2 = 60 - L

The area of the garden would be L*W which must be ≥ 800

So
$$L^*W \ge 800$$
 and substitute $(60 - L)$ in for W
 $L^*(60 - L) \ge 800$
 $60L - L^2 - 800 \ge 0$ (divide by -1 and change inequality)
 $L^2 - 60L + 800 \le 0$ (now factor)
 $(L - 40)(L - 20) \le 0$

So our = 0 values are 20 and 40. And we make our sign table wanting the result to be < 0

	(-∞, 20)	20	(20, 40)	40	(40, ∞)
sign of (L – 20)	-	0	+	+	+
sign of (L – 40)	-	-	-	0	+

So the only interval producing (L - 40)(L - 20) < 0 would be (20, 40) and we see that at 20 and 40 the value would = 0. Thus we conclude:

The interval range for the length of her garden would be [20 ft, 40 ft].