Section 1.8
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
31. Show that the points $A(-1,3), B(3,11)$ and $C(5,15)$ are collinear by showing that $d(A, B)+d(B, C)=d(A, C)$

$$
\begin{aligned}
& \mathrm{d}(\mathrm{~A}, \mathrm{~B})=\sqrt{(3-(-1))^{2}+(11-3)^{2}}=\sqrt{4^{2}+8^{2}}=\sqrt{80}=4 \sqrt{5} \approx 8.94427 \\
& \mathrm{~d}(\mathrm{~B}, \mathrm{C})=\sqrt{(5-3)^{2}+(15-11)^{2}}=\sqrt{2^{2}+4^{2}}=\sqrt{20}=2 \sqrt{5} \approx 4.47213 \\
& \mathrm{~d}(\mathrm{~A}, \mathrm{C})=\sqrt{(5-(-1))^{2}+(15-3)^{2}}=\sqrt{6^{2}+12^{2}}=\sqrt{180}=6 \sqrt{5} \approx 13.4164
\end{aligned}
$$

And we see that $4 \sqrt{5}+2 \sqrt{5}=6 \sqrt{5}$ and thus we have shown that $\mathrm{d}(\mathrm{A}, \mathrm{B})+\mathrm{d}(\mathrm{B}, \mathrm{C})=\mathrm{d}(\mathrm{A}, \mathrm{C})$ and thus the points must be collinear.
82. Show that $x^{2}+y^{2}-4 x+10 y+13=0$ represents a circle and find the circle's center and radius.

To show the equation represents a circle you must demonstrate that it can be put in the form of: $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$, notice by doing this you will also answer the rest of the question. Completing the square is usually the method of choice for this type of problem.

$$
\begin{aligned}
\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}+10 \mathrm{y}+13 & \rightarrow\left(\mathrm{x}^{2}-4 \mathrm{x}+\square\right)+\left(\mathrm{y}^{2}+10 \mathrm{y}+\longrightarrow\right)=-13 \\
& \rightarrow\left(\mathrm{x}^{2}-4 \mathrm{x}+(-4 / 2)^{2}\right)+\left(\mathrm{y}^{2}+10 \mathrm{y}+(10 / 2)^{2}\right)=-13+(4 / 2)^{2}(10 / 2)^{2} \\
& \rightarrow(\mathrm{x}-2)^{2}+(\mathrm{y}+5)^{2}=16 \\
& \rightarrow(\mathrm{x}-2)^{2}+(\mathrm{y}+5)^{2}=4^{2}
\end{aligned}
$$

So the center of the circle is $(2,-5)$ with a radius of 4.
89. Find the area of the region that lies outside the circle: $\mathrm{x}^{2}+\mathrm{y}^{2}=4$, but inside the circle: $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{y}-12=0$

To solve this all you need to do is see that

1. the first circle is centered at $(0,0)$ with radius 2
2. the second circle can be rewritten as $(x+0)^{2}+(y-2)^{2}=16$ so it is centered at $(0,2)$ with radius 4
3. the first circle is completely contained within the second
4. the area of a circle $=\pi^{*}$ (radius) ${ }^{2}$

Thus the answer is: (area of circle 2) - (area of circle 1)

$$
\begin{aligned}
& =\pi^{*} 16-\pi^{*} 4 \\
& =12 \pi
\end{aligned}
$$

90. Sketch the region in the coordinate plane that satisfies both the

 inequalities: $x^{2}+y^{2} \leq 9$ and $y \geq|x|$. What is the area of this region.When you sketch this you should discover you have a circle of radius 3 centered at $(0,0)$ and a V with its point at $(0,0)$ that goes through $(-1,1)$ and $(1,1)$. Specifically you get:

where you need to determine the area of the shaded region. There are several ways to go from here. The easiest is to see that the angle of the V is 90° (each line is at a 45° angle from the y-axis by $\tan \alpha=1 / 1$ and $\tan \beta=1 /-1$) which means it is cutting out $90 / 360$ or $1 / 4$ of the circle. Thus the area is $(1 / 4) *($ area of circle $)=(1 / 4) * \pi^{*} 3^{2}=(9 / 4) \pi$.

