Section 1.10 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

20. Find the equation of the line through ($-1,-2$) and (4, 3)

Slope $=$ rise $/$ run $=(y 2-y 1) /(x 2-x 1)=(3--2) /(4--1)=5 / 5=1$
The use point-slope form: $\quad(y-y 1)=m(x-x 1)$

$$
\begin{aligned}
& (y--2)=1 *(x--1) \\
& y+2=x+1 \\
& y=x-1 \\
& \text { OR } \\
& y-x+1=0 \leftarrow \text { others want general form }
\end{aligned}
$$

32. Find the equation of the line through $(1 / 2,-2 / 3)$ and perpendicular to the line: $4 x-8 y=1$

First find the slope of $4 x-8 y=1$ (I suggest putting it in slop-intercept form)

$$
\begin{aligned}
4 x-8 y=1 & \rightarrow-8 y=1-4 x \\
& \rightarrow y=(1-4 x) /-8 \\
& \rightarrow y=-1 / 8+1 / 2 x
\end{aligned}
$$

So the slope of the given line is $-1 / 8$, we want ours to be perpendicular so we will use the negative reciprocal which is $8 / 1$ or just 8 . Put this into the equation for point slope form:

$$
\begin{aligned}
& (y-y 1)=m(x-x 1) \\
& (y-1 / 2)=8^{*}(x--2 / 3) \\
& y-1 / 2=8 x+16 / 3 \\
& y=8 x+35 / 6 \quad \leftarrow \text { slope-intercept form } \\
& \text { OR } \\
& y-8 x-35 / 6=0 \quad \leftarrow \text { general form }
\end{aligned}
$$

52. Show that $A(-3,-1), B(3,3)$ and $C(-9,8)$ are vertices of a right triangle.

To do this you must show that one of the angles of the triangle is 90°. You may want to sketch the points to see which angle it is likely to be. Or you will need to check all three angles. I will examine all three angles.

The angle at point B is defined by the line segments $B A$ and $B C$
We therefore need the slope of the line through BA and the slope of the line through BC. If the angle is 90° then the slopes will be negative reciprocals of one another.
Slope BA $=(-1-3) /(-3-3)=-4 /-6=2 / 3$
Slope BC $=(8-3) /(-9-3)=5 /-12=-5 / 12$
$2 / 3$ and $-5 / 12$ are NOT negative reciprocals so this angle is not 90°.
The angle at point C is defined by the line segments $C A$ and $C B$
Slope CA $=(-1-8) /(-3-9)=-9 / 6=-2 / 3$
Slope CB $=(3-8) /(3--9)=-5 / 12=-5 / 12 \quad($ same as for $B C)$
The angle at point A is defined by the line segments: $A B$ and $A C$
Slope $A B=(3--1) /(3--3)=4 / 6=2 / 3$
Slope AC $=(8-1) /(-9-3)=9 /-6=-3 / 2$
$2 / 3$ and $-3 / 2$ ARE negative reciprocals so this angle is not 90°
Thus there is a 90° angle at point A so the triangle must be a right triangle.
65. Biologists have observed the chirping rat of crickets of a certain species is related to temperature and the relationships appears to be very near linear. A cricket produces 120 chirps per minute at $70^{\circ} \mathrm{F}$ and 168 chirps per minute at $80^{\circ} \mathrm{F}$.

65 a. Find the linear equation that relates the temperature T and the number of chirps per minute \mathbf{N}.

In this problem you are given 2 points. We will let temperature be marked on the x -axis and the chirps per minute be on the y-axis. So the 2 points are:
($70^{\circ}, 120$ chirps) and ($80^{\circ}, 168$ chirps)
Notice this is in (T, N) form. The books solution is in (N, T) form. This is NOT a problem, the solutions are equivalent - the graphs will be different.

To get an equation for this first calculate the slope, m, of the line through the points and then use the point-slope form, $(\mathrm{N}-\mathrm{N} 1)=\mathrm{m}^{*}(\mathrm{~T}-\mathrm{T} 1)$, to find the line.
slope $=m=(168-120) /(80-70)=4.8$
So the equation is:
$\mathrm{N}-120=4.8^{*}(\mathrm{~T}-70)$
$\mathrm{N}-120=4.8 * \mathrm{~T}-336$
$\mathrm{N}=4.8^{*} \mathrm{~T}-216$
Note you could also solve this for T and get $4.8 \mathrm{~T}=\mathrm{N}+216$
or rather $T=(5 / 24) * N+45$
65 b. If the crickets are chirping at 150 chirps per minute, estimate the temperature.

Notice in part (a) we already have T as a function of N. So all we need to do is plug 150 in for N :

$$
\begin{aligned}
\mathrm{T}=(5 / 24)^{*} \mathrm{~N}+45 \quad \rightarrow \mathrm{~T} & =(5 / 24)^{*} 150+45 \\
\mathrm{~T} & =305 / 4^{\circ} \mathrm{F} \\
\mathrm{~T} & =76.25^{\circ} \mathrm{F}
\end{aligned}
$$

