Section 2.1
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
54. Find the domain of $\mathbf{g}(\mathbf{x})=\sqrt{7-3 x}$

Recall you can only take the square root of non-negative numbers $(\operatorname{sqrt}(0)=0)$.
So you must solve $\quad 7-3 x \geq 0$
$-3 x \geq 7$
$x \leq-7 / 3 \quad$ notice inequality flip due to division by negative
So the domain is $x \in(-\infty,-7 / 3]$
60. Find the domain of $\mathbf{g}(\mathbf{x})=\sqrt{x^{2}-2 x-8}$

Again you can only take the square root of non-negative numbers (sqrt $(0)=0$).
So solve

$$
\begin{aligned}
& x^{2}-2 x-8 \geq 0 \\
& (x-4)(x+2) \geq 0
\end{aligned}
$$

Thus equal zero occurs at $\mathrm{x}=-2$ or $\mathrm{x}=4$.
So the intervals to examine are $(-\infty,-2),(-2,4),(4, \infty)$
Consider the table:

	$(-\infty,-2)$	-2	$(-2,4)$	4	$(4, \infty)$
sign of (x-4)	-	0	-	+	+
sign of $(\mathrm{x}+2)$	-	0	+	+	+

We need $(x-4)(x+2)$ to be positive (≥ 0) so the valid intervals are:
$(-\infty,-2]$ and $[4, \infty)$
Thus we say the domain is $(-\infty,-2] \cup[4, \infty)$.

