Section 2.1 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

54. Find the domain of $g(x) = \sqrt{7-3x}$

Recall you can only take the square root of non-negative numbers (sqrt(0) = 0).

So you must solve $7-3x \ge 0$ $-3x \ge 7$ $x \le -7/3$ notice inequality flip due to division by negative

So the domain is $x \in (-\infty, -7/3]$

60. Find the domain of $g(x) = \sqrt{x^2 - 2x - 8}$

Again you can only take the square root of non-negative numbers (sqrt(0) = 0). So solve $x^2 - 2x - 8 \ge 0$

 $(x-4)(x+2) \ge 0$

Thus equal zero occurs at x = -2 or x = 4.

So the intervals to examine are $(-\infty, -2)$, (-2, 4), $(4, \infty)$

Consider the table:

	(-∞, -2)	-2	(-2, 4)	4	(4,∞)
sign of (x-4)	-	0	-	+	+
sign of $(x+2)$	-	0	+	+	+

We need (x - 4)(x + 2) to be positive (≥ 0) so the valid intervals are: $(-\infty, -2]$ and $[4, \infty)$

Thus we say the domain is $(-\infty, -2] \cup [4, \infty)$.