Section 2.2 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.

42. Does the equation $3 x+7 y=21$ define y as a function of x ?

Solve for $y: 3 x+7 y=21 \rightarrow 7 y=21-3 x$

$$
\rightarrow y=(21-3 x) / 7
$$

$$
\rightarrow y=3-(3 / 7) x
$$

Observe that for any given value of x you obtain a unique value for y. So the equation DOES define y as a function of x .
46. Does the equation $x^{2}+y=9$ define y as a function of x ? Solve for $y: x^{2}+y=9 \quad \rightarrow y=9-x^{2}$

Observe that for any given value of x you obtain a unique value for y . Thus the equation DOES define y as a function of x
76. The domestic postage rate for first class letters weighing $12 \mathbf{o z}$ or less is 34 cents for a letter weighing 1 oz or less and 23 cents for each additional ounce (or part of an ounce). Express the postage P as a function of the weight x of a letter for $0<x \leq 12$.

$$
P(x)= \begin{cases}34 & 0<x \leq 1 \\ 34+23 *\lceil x\rceil & 1<x<=12\end{cases}
$$

Notice that $\lceil x\rceil$ means ceiling of x which means you would always round x UP. So if $x=3.2$ you would round x to 4 and would have to pay $34+24 * 4=\$ 1.30$.

