Section 2.5 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

In this chapter be sure you know how to shift a function left, right, up and down. You must also be able to scale a function vertically or horizontally (as well as reflect it about either the x or y axis).

You will also be expected to know what an even function is and what an odd function is.
And there are 3 types of symmetries to learn:

1. symmetric about the x-axis (odd function),
2. symmetric about the y-axis (even function) and
3. symmetric about the origin.

Most students forget what symmetric about the origin means. Look it up!
20. Given $f(x)=x^{3}$. Write the function which will transform it to be shifted down 1 unit and shifted 4 units to the left.

First we will obtain the shift 1 unit down by subtracting 1 from the entire function:

$$
g(x)=f(x)-1=x^{3}-1
$$

Now we will obtain the left shift of 4 units by ADDING 4 to the cubed part:

$$
h(x)=g(x+4)=(x+4)^{3}-1 .
$$

24. Given $f(x)=|x|$. Write the function which will transform it to be shifted left 1 unit and shifted 10 units upward and stretch it vertically by a factor of 3.

I would recommend ALWAYS doing the stretching FIRST, otherwise you will stretch your shifting also and that is bad (consider if you shift up $10 \rightarrow|\mathrm{x}|+10$ then stretch by 3 , you would get $|x|+30$ and your shift would be upwards 30 , which would be wrong).

So first stretch vertically by a factor of 3 by multiplying the entire function by 3 .

$$
\mathrm{g}(\mathrm{x})=3 * \mathrm{f}(\mathrm{x})=3 *|\mathrm{x}|
$$

Then shift upwards by 10 by adding 10 to the entire function.

$$
h(x)=g(x)+10=3 *|x|+10
$$

Now shift left 1 unit by ADDING 1 to the x part.

$$
\mathrm{p}(\mathrm{x})=\mathrm{h}(\mathrm{x}+1)=\mathbf{3}^{*}|\mathrm{x}+\mathbf{1}|+\mathbf{1 0} .
$$

54. Determine whether $f(x)=x^{4}-4 x^{2}$ is even, odd or neither.

Recall:
If $f(-x)=f(x)$ then a $f(x)$ is even (and is symmetric about the y-axis).
If $f(-x)=-f(x)$ then $f(x)$ is odd (and is symmetric about the x-axis).

We are given: $f(x)=x^{4}-4 x^{2}$ so we just need to calculate $f(-x)$
$\mathrm{f}(-\mathrm{x})=(-\mathrm{x})^{4}-4^{*}(-\mathrm{x})^{2}=(-\mathrm{x})^{*}(-\mathrm{x})^{*}(-\mathrm{x})^{*}(-\mathrm{x})-4^{*}(-\mathrm{x})^{*}(-\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}^{2}$.
So $f(x)$ is even and symmetric about the y-axis.
Notice you need to graph this function also.

