Section 2.8
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
34. Find $f(g(x)), g(f(x)), f\left(f(x)\right.$ and $g(g(x))$ for: $f(x)=x^{2}$ and $g(x)=(x-3)^{1 / 2}$

Notice the notation $\mathrm{f} \circ \mathrm{g}=\mathrm{f}(\mathrm{g}(\mathrm{x})), \mathrm{g} \circ \mathrm{f}=\mathrm{g}(\mathrm{f}(\mathrm{x})), \ldots$
$\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}\left((\mathrm{x}-3)^{1 / 2}\right)=\left((\mathrm{x}-3)^{1 / 2}\right)^{2}=\mathrm{x}-3$
$\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}\left(\mathrm{x}^{2}\right)=\left(\mathrm{x}^{2}-3\right)^{1 / 2}=\sqrt{x^{2}-3}$
$f(f(x))=f\left(x^{2}\right)=\left(\left(x^{2}\right)\right)^{2}=x^{4}$
$g(g(x))=g\left((x-3)^{1 / 2}\right)=\left((x-3)^{1 / 2}-3\right)^{1 / 2}=\sqrt{\sqrt{x-3}-3}$
42. Find $f \circ g \circ h=f(g(h(x)))$ for $f(x)=1 / x, g(x)=x^{3}, h(x)=x^{2}+2$
$\mathrm{f}(\mathrm{g}(\mathrm{h}(\mathrm{x})))=\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}^{2}+2\right)\right)=\mathrm{f}\left(\left(\mathrm{x}^{2}+2\right)^{3}\right)=1 /\left(\mathrm{x}^{2}+2\right)^{3}$.
48. Express $h(x)=1 /(x+3)$ in the form of $f \circ g$, where $f \neq g \neq h$.

Notice there are many ways to do this. Rarely will the professor ever accept an answer that says something like $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=1 /(\mathrm{x}+3)$.

A more viable answer is something like: $\mathbf{f}(\mathbf{x})=\mathbf{1 / x}$ and $\mathbf{g}(\mathbf{x})=\mathbf{x}+\mathbf{3}$. Look for stuff that can easily be separated.

