Section 2.9 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

Memorize either or both of these:
A function is one to one if $\mathrm{x} 1 \neq \mathrm{x} 2$ then $\mathrm{f}(\mathrm{x} 1) \neq \mathrm{f}(\mathrm{x} 2)$.
A function is one to one if $f(x 1)=f(x 2)$ then $x 1=x 2$.
Memorize the 3 steps at the bottom of page 233 for finding the inverse of a one-to-one function. You will be expected to be able to do this:

1. Write $y=f(x)$
2. If possible, solve this equation for x in terms of $y\left(e . g . x=3^{*} y-5\right)$.
3. Interchange x and y (e.g. $y=3^{*} x-5$). The resulting equation is $y=f^{-1}(x)$.

18 a. If $f(5)=18$, find $f^{-1}(18)$
Here is a neat trick, that will help later.
Recall $f\left(f^{-1}(x)\right)=x=f^{-1}(f(x))$
Given: $f(5)=18 \quad$ So take $f^{-1}()$ of both sides

$$
f^{-1}(f(5))=f^{-1}(18) \quad \text { Simplify }
$$

$5=\mathbf{f}^{-1}(18)$

18 b. If $f^{-1}(4)=2$, find $f(2)$
Use the same trick.
Given: $\mathrm{f}^{-1}(4)=2 \quad$ Take f() of both side
$f\left(f^{-1}(4)\right)=f(2) \quad$ Simplify
$4=f(2)$

23. Show f and g are inverses of each other.

$$
f(x)=2 x-5, \quad g(x)=(x+5) / 2
$$

Show that $\mathrm{f} \circ \mathrm{g}=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}$ and then show $\mathrm{g} \circ \mathrm{f}=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
$\mathrm{f} \circ \mathrm{g}=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}((\mathrm{x}+5) / 2)=2^{*}((\mathrm{x}+5) / 2)-5=(\mathrm{x}+5)-5=\mathrm{x}$
$g \circ f=g(f(x))=g((2 x-5))=((2 x-5)+5) / 2=(2 x) / 2=x$
So $\mathrm{f} \circ \mathrm{g}=\mathrm{g} \circ \mathrm{f}=\mathrm{x}$ and thus by the Property of Inverse Functions f and g are inverses.
32. Find the inverse of $f(x)=6-x$.

$$
\begin{array}{ll}
y=6-x & \text { Let } y=f(x), \text { then solve for } x \\
x+y=6 & \\
x=6-y & \text { Interchange the } x \text { and the } y \\
y=6-x & \text { And now } y=f^{-1}(x) \\
\mathbf{f}^{-1}(\mathbf{x})=\mathbf{6}-\mathbf{x} .
\end{array}
$$

38. Find the inverse of $f(x)=(x-2) /(x+2)$

$$
\begin{aligned}
& y=(x-2) /(x+2) \\
& \begin{array}{l}
\text { Yet } y=f(x) \text { and then solve for } x \\
y=1-4 /(x+2) \\
y-1=-4 /(x+2) \\
(x+2) *(y-1)=-4 \\
\text { You will need to actually remember "synthetic division" } \\
x+2=-4 /(y-1) \\
x=-4 /(y-1)-2=-2-4 /(y-1)=-2-\frac{4}{y-1} \quad \text { Interchange the } x \text { and } y
\end{array} \\
& y=-2-\frac{4}{x-1} \\
& \mathbf{f}^{-1}(\mathbf{x})=-2-4 /(x-1)
\end{aligned}
$$

