Section 3.2 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

12. Use synthetic division to find the quotient and remainder of: $(x^2 - 5x + 4) / (x - 1)$

Notice Long Division Sets stuff up like this:

$$x - 1 | x^2 - 5x + 4$$

Synthetic division just uses the coefficients: NOTICE that the divisor is in the form of $(x - c) \leftarrow$ emphasis on the MINUS

And we get our answer: **Quotient** = (1x - 4) **Remainder** = 0

14. Use synthetic division to find the quotient and remainder of: $(4x^2 - 3) / (x + 5)$

NOTICE that the divisor is in the form of $(x - c) \leftarrow$ emphasis on the MINUS So (x + 5) = (x - 5)

Also note that there is no x to the first power in the dividend, so we rewrite it: $(4x^2 - 3) = (4x^2 + 0x - 3)$

First we bring down the leading 4:						
-5	4	0	-3			
	4					
Multiply $-5 * 4$ and place the result under the 0 and add						
-5	4	0	-3			
		-20				
	4	-20				
Multiply $-5 * -20$ and place the result under the -3 and add						
-5	4	0	-3			
		-20	100			
	4	-20	97			

So the **Quotient** = (4x - 20) with Remainder = 97

This can also be written: $\frac{4x^2 - 3}{x + 5} = 4x - 20 + \frac{97}{x + 5}$

Just like 20/3 \rightarrow quotient = 6 and remainder = 2, so $\frac{20}{3} = 6 + \frac{2}{3}$

36. Use synthetic division and the Remainder Theorem to evaluate P(c) for: $P(x) = x^3 - x + 1$, $c = \frac{1}{4}$.

While this may seem silly, since you can just put $\frac{1}{4}$ into P(x) and get the answer, this technique is actually used in computer systems because it reduces the number of multiplies necessary to find the answer (multiplies take a "long" time to perform).

So we divide $P(x)$ Notice $x^3 - x + 1$	(x) by $(x - \frac{1}{4})$ = $x^3 + 0x^2 - x + 1$					
First we bring do	wn the leading 1:					
1/4	1	0	-1	1		
	1					
Multiply ¹ / ₄ * 1 a	nd place the result	under the 0 and ad	ld:			
1/4	1	0	-1	1		
		1⁄4				
	1	1/4				
Multiply $\frac{1}{4} * \frac{1}{4}$ and place the result under the -1 and add:						
1/4	1	0	-1	1		
		1⁄4	1/16			
	1	1/4	-15/16			
Multiply $\frac{1}{4} \approx -15/16$ and place the result under the 1 and add:						
1/4	1	0	-1	1		
		1⁄4	1/16	-15/64		
	1	1⁄4	-15/16	49/64		

The remainder comes out to be 49/64 so we say $P(\frac{1}{4}) = 49/64$ (All for 3 multiplies and 3 adds)