# Section 3.2 Solutions and Hints 

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
12. Use synthetic division to find the quotient and remainder of: $\left(x^{2}-5 x+4\right) /(x-1)$

Notice Long Division Sets stuff up like this:

$$
x - 1 \longdiv { 1 x ^ { 2 } - 5 x + 4 }
$$

Synthetic division just uses the coefficients:
NOTICE that the divisor is in the form of $(\mathrm{x}-\mathrm{c}) \leftarrow$ emphasis on the MINUS
First we bring down the leading 1:


1
Now we multiply $1 * 1=1$ and place the result under the -5 and add $(-5+1)$
1


Now we multiply $1^{*}-4=-4$ and place the result under the 4 and add $(4+-4)$


And we get our answer: Quotient $=(\mathbf{1 x}-4)$ Remainder $=\mathbf{0}$

## 14. Use synthetic division to find the quotient and remainder of: $\left(4 x^{2}-3\right) /(x+5)$

NOTICE that the divisor is in the form of $(x-c) \leftarrow$ emphasis on the MINUS

$$
\text { So }(x+5)=(x--5)
$$

Also note that there is no x to the first power in the dividend, so we rewrite it:

$$
\left(4 x^{2}-3\right)=\left(4 x^{2}+0 x-3\right)
$$

First we bring down the leading 4:

| -5 | 4 | 0 | -3 |
| :--- | :--- | :--- | :--- |

4
Multiply $-5 * 4$ and place the result under the 0 and add
-5

| 4 | 0 |
| :---: | :---: |
| 4 | -20 |
| 4 | -20 |

Multiply $-5 *-20$ and place the result under the -3 and add

| -5 | 4 | 0 | -3 |
| :---: | :---: | :---: | :---: |
|  | -20 | 100 |  |
|  | -20 | 97 |  |

So the Quotient $=(\mathbf{4 x} \mathbf{- 2 0})$ with Remainder $=97$
This can also be written: $\frac{4 x^{2}-3}{x+5}=4 x-20+\frac{97}{x+5}$
Just like $20 / 3 \rightarrow$ quotient $=6$ and remainder $=2$, so $\frac{20}{3}=6+\frac{2}{3}$

## 36. Use synthetic division and the Remainder Theorem to evaluate $\mathrm{P}(\mathrm{c})$ for: $P(x)=x^{3}-x+1, \quad c=1 / 4$.

While this may seem silly, since you can just put $1 / 4$ into $P(x)$ and get the answer, this technique is actually used in computer systems because it reduces the number of multiplies necessary to find the answer (multiplies take a "long" time to perform).

So we divide $P(x)$ by ( $x-1 / 4$ )
Notice $\mathrm{x}^{3}-\mathrm{x}+1=\mathrm{x}^{3}+0 \mathrm{x}^{2}-\mathrm{x}+1$
First we bring down the leading 1 :


1
Multiply $1 / 4 * 1$ and place the result under the 0 and add:

| $1 / 4$ | 1 | 0 | -1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1/4 |  |  |
|  | 1 | 1/4 |  |  |

Multiply $1 / 4 * 1 / 4$ and place the result under the -1 and add:

| $1 / 4$ | 1 | 0 | -1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $1 / 4$ | 1/16 |  |
|  | 1 | $1 / 4$ | -15/16 |  |

Multiply $1 / 4 *-15 / 16$ and place the result under the 1 and add:

| $1 / 4$ | 0 | -1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | $1 / 4$ | $1 / 16$ | $-15 / 64$ |
|  | 1 | $1 / 4$ | $-15 / 16$ | $49 / 64$ |

The remainder comes out to be $49 / 64$ so we say $\mathbf{P}(1 / 4)=49 / 64$
(All for 3 multiplies and 3 adds)

