Section 3.5 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

40. Find all zeros of $x^3 - 7x^2 + 17x - 15$.

Recall to find the zeros of a polynomial the "easiest" method is to factor the polynomial. For example if $x^3 - 7x + 17x - 15 = 0$ can be factored such that (x - a)(x - b)(x - c) = 0 then a, b and c are called the zeros of the polynomial.

The factors of -15 are: -15, -5, -3, -1, 1, 3, 5, 15 The factors of 1 are: 1 (1 is the coefficient in front of the highest power, x^3 , term) So the possible rational solutions are: -15, -5, -3, -1, 1, 3, 5, 15

Synthetic division shows that 3 is the only rational solution:

3	1	-7	17	-15
		3	-12	15
	1	-4	5	0

Thus $x^3 - 7x + 17x - 15 = (x - 3)(x^2 - 4x + 5)$

So x = 3 is a zero of $x^3 - 7x + 17x - 15$ and we can use the quadratic formula to find the other 2 (complex) zeros by solving $x^2 - 4x + 5 = 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{(-4)^2 - 4^* 1^* 5}}{2^* 1} = \frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i$$

Thus the zeros of $x^3 - 7x + 17x - 15$ are x = 3, 2 + i, 2 - i.

48. Find all zeros of $x^4 - 2x^3 - 2x^2 - 2x - 3$.

This works just like problem 40, first we look for the rational solutions:

Factors of -3: -3, -1, 1, 3Factors of 1: 1 (1 is the coefficient in front of the highest power, x^4 , term)

So the possible rational zeros are: -3, -1, 1, 3

Synthetic division shows that -1 is a rational solution:

-1	1	-2	-2	-2	-3	
		-1	3	-1	3	_
	1	-3	1	-3	0	

So $x^4 - 2x^3 - 2x^2 - 3 = (x + 1)(x^3 - 3x^2 + x - 3)$

Notice the possible rational zeros of $x^3 - 3x^2 + x - 3$ are the same as those for $x^4 - 2x^3 - 2x^2 - 3$, this should not be surprising.

Working now on $x^3 - 3x^2 + x - 3$ we find through synthetic division that 3 is the only other rational solution:

3	1	-3	1	-3
		3	0	3
	1	0	1	0

So $x^4 - 2x^3 - 2x^2 - 3 = (x + 1)(x - 3)(x^2 + 1)$

Solving $(x^2 + 1) = 0$ gives $x^2 = -1$ or rather $x = \pm \sqrt{-1} = \pm i$

Thus the zeros of $x^4 - 2x^3 - 2x^2 - 3$ are x = -1, 3, -i, i.