Section 3.5
 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.

40. Find all zeros of $x^{3}-7 x^{2}+17 x-15$.

Recall to find the zeros of a polynomial the "easiest" method is to factor the polynomial. For example if $x^{3}-7 x+17 x-15=0$ can be factored such that $(x-a)(x-b)(x-c)=0$ then a, b and c are called the zeros of the polynomial.

The factors of -15 are: $-15,-5,-3,-1,1,3,5,15$
The factors of 1 are: 1 (1 is the coefficient in front of the highest power, x^{3}, term) So the possible rational solutions are: $-15,-5,-3,-1,1,3,5,15$

Synthetic division shows that 3 is the only rational solution:

3 | 1 | -7 | 17 | -15 |
| :---: | :---: | :---: | :---: |
| | 3 | -12 | 15 |
| 1 | -4 | 5 | 0 |

Thus $\mathrm{x}^{3}-7 \mathrm{x}+17 \mathrm{x}-15=(\mathrm{x}-3)\left(\mathrm{x}^{2}-4 \mathrm{x}+5\right)$
So $x=3$ is a zero of $x^{3}-7 x+17 x-15$ and we can use the quadratic formula to find the other 2 (complex) zeros by solving $x^{2}-4 x+5=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{(-4)^{2}-4 * 1 * 5}}{2 * 1}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i
$$

Thus the zeros of $\mathrm{x}^{3}-7 \mathrm{x}+17 \mathrm{x}-15$ are $\mathrm{x}=\mathbf{3}, \mathbf{2}+\mathrm{i}, \mathbf{2} \mathbf{- i}$.

48. Find all zeros of $x^{4}-2 x^{3}-2 x^{2}-2 x-3$.

This works just like problem 40, first we look for the rational solutions:
Factors of $-3:-3,-1,1,3$
Factors of 1:1 (1 is the coefficient in front of the highest power, x^{4}, term)
So the possible rational zeros are: $-3,-1,1,3$
Synthetic division shows that -1 is a rational solution:

-1	1	-2	-2	-2	-3
		-1	3	-1	3
	1	-3	1	-3	0

So $\mathrm{x}^{4}-2 \mathrm{x}^{3}-2 \mathrm{x}^{2}-3=(\mathrm{x}+1)\left(\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}-3\right)$
Notice the possible rational zeros of $x^{3}-3 x^{2}+x-3$
are the same as those for $\mathrm{x}^{4}-2 \mathrm{x}^{3}-2 \mathrm{x}^{2}-3$, this should not be surprising.
Working now on $\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}-3$ we find through synthetic division that 3 is the only other rational solution:

3 | 1 | -3 | 1 | -3 |
| :---: | :---: | :---: | :---: |
| | 3 | 0 | 3 |
| 1 | 0 | 1 | 0 |

So $\mathrm{x}^{4}-2 \mathrm{x}^{3}-2 \mathrm{x}^{2}-3=(\mathrm{x}+1)(\mathrm{x}-3)\left(\mathrm{x}^{2}+1\right)$
Solving $\left(x^{2}+1\right)=0$ gives $\mathrm{x}^{2}=-1$ or rather $\mathrm{x}= \pm \sqrt{-1}= \pm i$
Thus the zeros of $x^{4}-2 x^{3}-2 x^{2}-3$ are $x=-\mathbf{1}, \mathbf{3},-\boldsymbol{i}, \boldsymbol{i}$.

