Section 4.1 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

If you haven't memorized the following, you might as well do so now:

Compound Interest

$$
A(t)=P *\left(1+\frac{r}{n}\right)^{n^{*} t}
$$

where $A(t)=$ amount after t years.
$P=$ principal (or initial amount).
$r=$ interest rate per year.
$n=$ number of times interest is compounded per year.
$t=$ time in years.

Continuously Compounded Interest

$$
A(t)=P e^{r * t}
$$

where $A(t)=$ amount after t years.
$P=$ principal (or initial amount).
$r=$ interest rate per year.
$t=$ time in years.
46. A 50 gallon barrel is filled completely with pure. Salt water with a concentration of $0.3 \mathrm{lb} / \mathrm{gal}$ is then pumped into the barrel, and the resulting mixture overflows at the same rate. The amount of salt in the barrel at time t is given by:

$$
Q(t)=15^{*}\left(1-e^{-0.04^{*} t}\right)
$$

where t is measured in minutes and $Q(t)$ is measured in pounds.
46 a. How much salt is in the barrel after 5 minutes?
$\mathrm{Q}(5)=15 *\left(1-\mathrm{e}^{-0.04 * 5}\right) \sim=\mathbf{0 . 2 9 7}$ lbs.

46 b. How much salt is in the barrel after 10 minutes?
$\mathrm{Q}(5)=15 *\left(1-\mathrm{e}^{-0.04 * 10}\right) \sim=\mathbf{0 . 5 8 8}$ lbs.

46 c. Draw the graph of $Q(t)$
This is left for you to complete.

46 d. Use the graph in part (c) to determine the value that the amount of salt in the barrel approaches as t becomes large. Is this what you expect.

You should see that the amount approaches 15 pounds as t becomes large. This should make sense because the barrel will eventually be completely full of water that has a $0.3 \mathrm{lb} /$ gal concentration of salt in it $\rightarrow 50$ gallons $* 0.3$ pounds / gallon $=15$ pounds.
49. If $\$ 10000$ is invested at an annual interest rate of 10% per year, compounded semiannually, find the value of the investment after the given number of years:

49 a. 5 years
This will obviously use the formula: $A(t)=P *\left(1+\frac{r}{n}\right)^{n^{*} t}$
$\mathrm{P}=10000$
$\mathrm{r}=0.10$
$\mathrm{n}=2$, since semiannually means 2 times per year.
$\mathrm{t}=5$
$A(t)=$ what we need to find.
$A(t)=10000 *\left(1+\frac{0.1}{2}\right)^{2 * 5}=10000 *(1.05)^{10} \approx 16288.95$
So after 5 years the investment would be worth $\mathbf{\$ 1 6 , 2 8 8 . 9 5}$

49 b. 10 years

Everything is the same except $t=10$
$A(t)=10000 *\left(1+\frac{0.1}{2}\right)^{2 * 10}=10000 *(1.05)^{20} \approx 26532.98$
So after 10 years the investment would be worth $\mathbf{\$ 2 6 , 5 3 2} .98$

49 c. 15 years
Everything is the same except $t=15$

$$
A(t)=10000 *\left(1+\frac{0.1}{2}\right)^{2 * 15}=10000 *(1.05)^{30} \approx 43219.42
$$

So after 15 years the investment would be worth $\$ 43,219.42$
50. If $\$ 4000$ is borrowed at a rate of 16% interest per year, compounded quarterly, find the amount due at the end of the given number of years.

50 a. 4 years

This will obviously use the formula: $A(t)=P *\left(1+\frac{r}{n}\right)^{n^{*} t}$
$P=4000$
$\mathrm{r}=0.16$
$\mathrm{n}=4$, since quarterly means 4 times per year.
$\mathrm{t}=4$
$\mathrm{A}(\mathrm{t})=$ what we need to find.

$$
A(t)=4000 *\left(1+\frac{0.16}{4}\right)^{4 * 4}=4000 *(1.04)^{16} \approx 7491.92
$$

So after 4 years the amount due would be $\$ 7,491.92$

50 b. 6 years

This is the same except $t=6$

$$
A(t)=4000 *\left(1+\frac{0.16}{4}\right)^{4 * 6}=4000 *(1.04)^{24} \approx 10253.22
$$

So after 6 years the amount due would be $\mathbf{\$ 1 0 , 2 5 3 . 2 2}$

50 c. 8 years

This is the same except $t=8$
$A(t)=4000 *\left(1+\frac{0.16}{4}\right)^{4^{* 8}}=4000 *(1.04)^{32} \approx 14032.24$
So after 8 years the amount due would be $\mathbf{\$ 1 4 , 0 3 2 . 2 4}$

