Section 4.2 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

22. Evaluate the given expression.

22 a.
$$\log_4 (2^{1/2})$$

 $\log_4 \sqrt{2} = \log_4 (2^{1/2})$ since the base is 4
 $= \log_4 (4^{1/2})^{1/2}$ getting everything in terms of 4
 $= \log_4 (4^{1/4})$ is a good idea
 $= (1/4) * \log_4 (4)$
 $= (1/4) * 1$ because stuff will cancel nicely
 $= 1/4$

22 b.
$$\log_4 (\frac{1}{2})$$

 $\log_4(\frac{1}{2})$
 $= \log_4(2^{-1})$
 $= \log_4((4^{1/2})^{-1})$
 $= \log_4(4^{-1/2})$
 $= -\frac{1}{2}\log_4(4)$
 $= -\frac{1}{2} * 1$
 $= -\frac{1}{2}$

22 c. log₄ (8)

If you haven't seen the pattern, solve $8 = 4^k$ first and then substitute stuff in. It goes like this:

 $8 = 4 * 2 = 4 * 4^{1/2} = 4^{3/2}$

So

 $\log_4(8) = \log_4(4^{3/2}) = 3/2$

30 a. Solve for x: $\log_x (6) = \frac{1}{2}$

 $\log_{x}(6) = \frac{1}{2} \rightarrow x^{\log_{x} 6} = x^{1/2}$ $\rightarrow 6 = x^{1/2}$ $\rightarrow 36 = x$

This works because if a = b then $x^a = x^b$ Now square both sides

30 b. Solve for x: $\log_x (3) = 1/3$

$$log_{x}(3) = 1/3 \rightarrow x^{log_{x}3} = x^{1/3}$$

$$\Rightarrow 3 = x^{1/3}$$
Now c

$$\Rightarrow 27 = x$$

Now cube both sides

60. Find the domain of $g(x) = ln(x - x^2)$

Recall the domain of a function is the allowable x values of the function, g(x). Recall that you can only take the log (or natural log) of non-negative numbers. So solve $x - x^2 \ge 0$

$$x - x^2 \ge 0 \quad \Rightarrow x (1 - x) \ge 0$$

Notice $x^*(1 - x) = 0$ at x = 0 and x = 1. So use a sign table to solve:

	(-∞, 0)	0	(0, 1)	1	$(1,\infty)$
sign of x	-	0	+	+	+
sign of $(1 - x)$	+	+	+	0	-
sign of $x * (1 - x)$	-	0	+	+	-
x * (1 - x)					

So the domain is whatever intervals make x * (1 - x) non-negative.

Domain = [0, 1]