Section 4.2
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

22. Evaluate the given expression.

22 a. $\log _{4}\left(2^{1 / 2}\right)$

$$
\begin{array}{rlr}
\log _{4} \sqrt{2} & =\log _{4}\left(2^{1 / 2}\right) & \\
& =\log _{4}\left(\left(4^{1 / 2}\right)^{1 / 2}\right) & \\
& =\log _{4}\left(4^{1 / 4}\right) & \\
& \text { getting everything in terms of } 4 \\
& \text { is a good idea } \\
& =(1 / 4) * \log _{4}(4) & \\
& =\mathbf{1} / 4 &
\end{array}
$$

22 b. $\log _{4}(1 / 2)$

$$
\begin{aligned}
\log _{4}(1 / 2) & =\log _{4}\left(2^{-1}\right) \\
& =\log _{4}\left(\left(4^{1 / 2}\right)^{-1}\right) \\
& =\log _{4}\left(4^{-1 / 2}\right) \\
& =-1 / 2 \log _{4}(4) \\
& =-1 / 2 * 1 \\
& =-1 / 2
\end{aligned}
$$

22 c. $\log _{4}(8)$
If you haven't seen the pattern, solve $8=4^{k}$ first and then substitute stuff in.
It goes like this:

$$
8=4 * 2=4 * 4^{1 / 2}=4^{3 / 2}
$$

So

$$
\log _{4}(8)=\log _{4}\left(4^{3 / 2}\right)=\mathbf{3} / \mathbf{2}
$$

30 a. Solve for x : $\log _{\mathrm{x}}(6)=1 / 2$

$$
\begin{aligned}
\log _{x}(6)=1 / 2 & \rightarrow x^{\log _{x} 6}=x^{1 / 2} \\
& \rightarrow 6=x^{1 / 2} \\
& \rightarrow \mathbf{3 6}=\mathbf{x}
\end{aligned}
$$

This works because if $\mathrm{a}=\mathrm{b}$ then $\mathrm{x}^{\mathrm{a}}=\mathrm{x}^{\mathrm{b}}$ Now square both sides

30 b . Solve for x : $\log _{\mathrm{x}}(3)=1 / 3$

$$
\begin{aligned}
\log _{x}(3)=1 / 3 & \rightarrow x^{\log _{x} 3}=x^{1 / 3} \\
& \rightarrow 3=x^{1 / 3} \\
& \rightarrow 27=\mathbf{x}
\end{aligned}
$$

60. Find the domain of $g(x)=\ln \left(x-x^{2}\right)$

Recall the domain of a function is the allowable x values of the function, $\mathrm{g}(\mathrm{x})$.
Recall that you can only take the \log (or natural \log) of non-negative numbers.
So solve $x-x^{2} \geq 0$

$$
\mathrm{x}-\mathrm{x}^{2} \geq 0 \quad \rightarrow \mathrm{x}(1-\mathrm{x}) \geq 0
$$

Notice $x^{*}(1-x)=0$ at $x=0$ and $x=1$. So use a sign table to solve:

	$(-\infty, 0)$	0	$(0,1)$	1	$(1, \infty)$
sign of x	-	0	+	+	+
sign of $(1-\mathrm{x})$	+	+	+	0	-
sign of	-	0	+	+	-
$\mathrm{x} *(1-\mathrm{x})$					

So the domain is whatever intervals make $\mathrm{x} *(1-\mathrm{x})$ non-negative.
Domain $=[0,1]$

