Section 4.4
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.
28. Solve: $x^{2 *} 10^{x}-x^{*} 10^{x}=2^{*}\left(10^{x}\right)$

$$
\begin{array}{ll}
\mathrm{x}^{2} * 10^{\mathrm{x}}-\mathrm{x} * 10^{\mathrm{x}}=2 *\left(10^{\mathrm{x}}\right) & \text { Divide both sides by } 10^{\mathrm{x}} \\
\mathrm{x}^{2}-\mathrm{x}=2 & \text { Now factor } \\
\mathrm{x}^{2}-\mathrm{x}-2=0 & \\
(\mathrm{x}-2)(\mathrm{x}+1)=0 & \\
\mathbf{x}=\mathbf{2} \text { or } \mathbf{x}=\mathbf{- 1} &
\end{array}
$$

32. Solve: $e^{2 x}-e^{x}-6=0$

$$
\begin{aligned}
& \mathrm{e}^{2 x}-e^{x}-6=0 \\
& \left(e^{x}\right)^{2}-e^{x}-6=0 \\
& \left(e^{x}-3\right)\left(e^{x}+2\right)=0
\end{aligned}
$$

Now solve: $\left(e^{x}-3\right)=0$ and $\left(e^{x}+2\right)=0$
$\left(\mathrm{e}^{\mathrm{x}}-3\right)=0 \rightarrow \mathrm{e}^{\mathrm{x}}=3 \rightarrow \ln \left(\mathrm{e}^{\mathrm{x}}\right)=\ln (3) \rightarrow \mathrm{x}=\ln (3)$
$\left(\mathrm{e}^{\mathrm{x}}+2\right)=0 \rightarrow \mathrm{e}^{\mathrm{x}}=-2 \rightarrow \ln \left(\mathrm{e}^{\mathrm{x}}\right)=\ln (-2) \rightarrow$ no solution
So the only answer is $\mathbf{x}=\ln (3)$

34. Solve: $e^{x}-12 e^{-x}-1=0$

This one looks tough, but is not. Remember that the only real trick you have is when you have an $\mathrm{e}^{2 \mathrm{x}}$, and you change it to $\left(\mathrm{e}^{\mathrm{x}}\right)^{2}$ and then you factor. So this problem is missing that $\mathrm{e}^{2 \mathrm{x}}$ term, thus you might think... "If I multiply both sides by e^{x} what will happen?"

$$
\begin{array}{ll}
\mathrm{e}^{\mathrm{x}}-12 \mathrm{e}^{-\mathrm{x}}-1=0 & \text { Multiply both sides by } \mathrm{e}^{\mathrm{x}} \\
\left(\mathrm{e}^{\mathrm{x}}\right)^{2}-12-1 * \mathrm{e}^{\mathrm{x}}=0 & \text { Rewrite stuff a little better } \\
\left(\mathrm{e}^{\mathrm{x}}\right)^{2}-\mathrm{e}^{\mathrm{x}}-12=0 & \text { Now factor } \\
\left(\mathrm{e}^{\mathrm{x}}-4\right)\left(\mathrm{e}^{\mathrm{x}}+3\right)=0 &
\end{array}
$$

Now solve for: $\left(e^{x}-4\right)=0$ and $\left(e^{x}+3\right)=0$
$\left(\mathrm{e}^{\mathrm{x}}-4\right)=0 \rightarrow \mathrm{e}^{\mathrm{x}}=4 \rightarrow \ln \left(\mathrm{e}^{\mathrm{x}}\right)=\ln (4) \rightarrow \mathrm{x} * \ln (\mathrm{e})=\ln (4) \rightarrow \mathrm{x}=\ln (4)$
$\left(\mathrm{e}^{\mathrm{x}}+3\right)=0 \rightarrow \mathrm{e}^{\mathrm{x}}=-3 \rightarrow \mathrm{x}=\ln (-3) \rightarrow$ no solution
So the only answer is $x=\ln (4)$

46. Solve for $x: \log _{5} x+\log _{5}(x+1)=\log _{5} 20$

$$
\begin{array}{ll}
\log _{5}(\mathrm{x})+\log _{5}(\mathrm{x}+1)=\log _{5}(20) & \text { Use log properties } \\
\rightarrow \log _{5}(\mathrm{x} *(\mathrm{x}+1))=\log _{5}(20) & \\
\rightarrow \log _{5}\left(\mathrm{x}^{2}+\mathrm{x}\right)=\log _{5}(20) & \text { Now use prop: if a } \\
\rightarrow 5^{\log _{5}\left(\mathrm{x}^{*}(\mathrm{x}+1)\right)}=5^{\log _{5}(20)} & \text { Recall } 5^{\log _{5}(\text { anythir }} \\
\rightarrow \mathrm{x}^{2}+\mathrm{x}=20 & \\
\rightarrow \mathrm{x}^{2}+\mathrm{x}-20=0 & \text { Factor } \\
\rightarrow(\mathrm{x}+5)(\mathrm{x}-4)=0 &
\end{array}
$$

Solve $(x+5)=0$ and $(x-4)=0 \rightarrow \quad x=-5$ or $x=4$
IMPORTANT: always check your answers - put them back into the original equation
$\log _{5}(4)+\log _{5}(4+1)=\log _{5}(20)$ this works.
$\log _{5}(-5)+\log _{5}(-5+1)=\log _{5}(20)$ this does NOT work, you cannot take $\log _{5}(-5)$.
So the only answer is $\mathbf{x}=\mathbf{4}$

52. For what value of x is it true that $(\log x)^{3}=3^{*} \log (x)$?

Be careful on this one - it is not that obvious.

$$
\begin{array}{ll}
(\log \mathrm{x})^{3}=3^{*} \log (\mathrm{x}) & \text { Divide both sides by } \log (\mathrm{x}) \\
(\log \mathrm{x})^{2}=3 & \text { Take the square root of both sides } \\
\log (\mathrm{x})=3^{1 / 2} & \text { Use the property: if } \mathrm{a}=\mathrm{b} \text { then } 10^{\mathrm{a}}=10^{\mathrm{b}} \\
10^{\log (x)}=10^{\sqrt{3}} & \text { Recall } \log \text { is the same thing as } \log _{10} . \\
\mathbf{x}=10^{\sqrt{3}} &
\end{array}
$$

56. A man invests $\$ 6500$ in an account that pays $\mathbf{6 \%}$ interest per year, compounded continuously.

56 a. What is the amount after 2 years?

Recall:

Continuously Compounded Interest

$$
A(t)=P e^{r^{*} t}
$$

where $A(t)=$ amount after t years.
$P=$ principal (or initial amount).
$r=$ interest rate per year.
$t=$ time in years.
For this we are trying to find $\mathrm{A}(2) . \quad \mathrm{P}=6500, \quad \mathrm{r}=0.06, \quad \mathrm{t}=2$
$\mathrm{A}(2)=6500 * \mathrm{e}^{0.06 * 2} \sim=7328.73$

So it is worth about $\$ 7,328.73$ after 2 years.

56 b. How long will it take for the amount to be $\$ 8000$?

Here we are given $A(t)=8000$ and we need to find $t . \quad P=6500, \quad r=0.06$

$8000=6500 * \mathrm{e}^{0.06 * \mathrm{t}}$	Isolate the e by dividing both sides by 6500
$8000 / 6500=\mathrm{e}^{0.06 * \mathrm{t}}$	Take the natural log of both sides
$\ln (8000 / 6500)=\ln \left(\mathrm{e}^{0.06 * \mathrm{t}}\right)$	Simplify $\ln (8000 / 6500)=0.06 * \mathrm{t}$
Divide both sides by 0.06 $\frac{\ln \left(\frac{8000}{6500}\right)}{0.06}=t$	

So t is about 3.46 years.

62. Find the annual percentage yield for an investment that earns $51 / 2 \%$ per year, compounded continuously.

For this we are trying to find $A(t) . \quad P=P, \quad r=0.055, \quad t=1$
Recall:

Continuously Compounded Interest

$$
A(t)=P e^{r^{*} t}
$$

where $A(t)=$ amount after t years.
$P=$ principal (or initial amount).
$r=$ interest rate per year.
$t=$ time in years.
AND notice this section tells you that the formula for simple interest is: $\quad \mathrm{A}=\mathrm{P}(1+$ a.p.y $), \quad$ where a.p. $\mathrm{y} .=$ annual percentage yield

So we will take our first equation: $A(t)=P e^{r^{*} t}$ and put $\mathrm{r}=0.055$ and $\mathrm{t}=1$ into it:
$\mathrm{A}=\mathrm{Pe}^{0.055 * 1}=\mathrm{Pe}^{0.055}$
And we set that equal to $\mathrm{P}^{*}(1+$ a.p.y. $)$ and solve for a.p.y.
$\mathrm{Pe}^{0.055}=\mathrm{P}(1+$ a.p.y. $) \quad$ divide both sides by P
$\mathrm{e}^{0.055}=(1+$ a.p.y. $)$
$1.05654 \sim=(1+$ a.p.y. $) \quad$ subtract 1 from both sides 0.05654 ~= a.p.y.

So we conclude that the annual percentage yield is about 5.65%.

