# Section 5.3 Solutions and Hints 

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.
50. A tuning fork is struck producing a pure tone as its tines vibrate. The vibrations are modeled by the function:

$$
v(t)=0.7^{*} \sin \left(880 \pi^{*} t\right)
$$

where $\mathrm{v}(\mathrm{t})$ is the displacement of the tines in millimeters at time $\boldsymbol{t}$ seconds.
50a. Find the period of the vibration.
You will first want to write $v(t)$ in the form of $v(t)=y=a^{*} \sin \left(k^{*}(t-b)\right)$
$\mathrm{v}(\mathrm{t})=0.7 * \sin \left(880 \pi^{*} \mathrm{t}\right)=0.7 * \sin (880 \pi *(\mathrm{t}-0))$
Thus amplitude $=\mathrm{a}=0.7$ millimeters
period $=2 \pi / k=2 \pi /(880 \pi)=(1 / 440)$ seconds $\quad(\sim=0.00227$ seconds $)$
phase shift $=\mathrm{b}=0$
Of course all you need is period $=(1 / 440)$ seconds.

50b. Find the frequency of the vibration
(i.e. the number of times the fork vibrates per second).

For this all you need to remember is that frequency $=1 /$ period .
Thus the frequency $=1 /(1 / 440)=\mathbf{4 4 0}$ vibrations per second.

50c. Graph the function $\mathrm{v}(\mathrm{t})$.
This is left for you to complete - use your calculator.

