Section 5.4 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

This entire section is just manipulating stuff into the nice form of:

$$
\mathrm{a} * \text { function }(\mathrm{k} *(\mathrm{x}-\mathrm{b}))
$$

Notice the book leaves off the b assuming you will realize it to be the phase shift as in the previous section (see example 4b in this section)

Also note tangent and cotangent are the only 2 (of the 6) trig functions whose period is π / k. All the others are $2 \pi / \mathrm{k}$. Thus:

$$
\begin{array}{ll}
\tan (x+\pi)=\tan (x) & \cot (x+\pi)=\cot (x) \\
\csc (x+2 \pi)=\csc (x) & \sec (x+2 \pi)=\sec x
\end{array}
$$

This may come in useful for solving problems in later classes.

36. Find the period and graph: $y=1 / 2^{*} \tan \left(\pi^{*} x-\pi\right)$

Be aware that while it appears k always $=$ the stuff in front of the x , there is a little step you must do to get things into the correct form:

We want: $\mathrm{y}=\mathrm{a}^{*} \tan (\mathrm{k} *(\mathrm{x}-\mathrm{b}))$
We have: $y=1 / 2^{*} \tan \left(\pi^{*} x-\pi\right)$,
So pull out a π and get:

$$
y=1 / 2^{*} \tan \left(\pi^{*}(x-1)\right)
$$

Thus $\mathrm{k}=\pi$ and the period of tangent $=\pi / \mathrm{k}$, thus the period $=\pi / \pi=\mathbf{1}$

