Section 5.4 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

This entire section is just manipulating stuff into the nice form of:

a * function(k * (x - b))

Notice the book leaves off the b assuming you will realize it to be the phase shift as in the previous section (see example 4b in this section)

Also note tangent and cotangent are the only 2 (of the 6) trig functions whose period is π/k . All the others are $2\pi/k$. Thus:

 $tan(x + \pi) = tan(x)$ $csc(x + 2\pi) = csc(x)$ This may come in useful for solving problems in later classes.

36. Find the period and graph: $y = \frac{1}{2} \tan(\pi^* x - \pi)$

Be aware that while it appears k always = the stuff in front of the x, there is a little step you must do to get things into the correct form:

We want: $y = a^{*}tan(k^{*}(x - b))$

We have: $y = \frac{1}{2} \tan(\pi^* x - \pi)$,

So pull out a π and get: y = $\frac{1}{2} \tan(\pi^*(x-1))$

Thus $k = \pi$ and the period of tangent $= \pi / k$, thus the period $= \pi / \pi = 1$

All of these problems work in a similar fashion. PRACTICE DOING THEM !