Section 6.1 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition
by James Stewart, Lothar Redlin and Saleem Watson.

If you remember nothing else from this section remember:

$$
\text { arc length }=\text { radius } * \text { angle }
$$

$$
\mathrm{s}=\mathrm{r}^{*} \theta
$$

where the angle, θ, is measured in radians.
There are other formulas, but that one is pretty important.
48. A circular arc of length 3 feet subtends a central angle of $\mathbf{2 5}^{\circ}$. Find the radius of the circle.

Start with $\mathrm{s}=\mathrm{r}^{*} \theta, \mathrm{~s}=3$ feet, $\theta=25^{\circ}=25^{*}(\pi / 180)=(5 / 36) \pi$ radians

$$
3=\mathrm{r} *(5 / 36) \pi \rightarrow 3^{*}(36 / 5)=\mathrm{r}^{*} \pi \rightarrow 21.6=\pi^{*} \mathrm{r} \rightarrow \mathbf{r}=21.6 / \pi \text { feet }
$$

52. Memphis, Tennessee and New Orleans Louisiana lie approximately on the same meridian. Memphis has latitude $35^{\circ} \mathrm{N}$ and New Orleans $30^{\circ} \mathrm{N}$. Find the distance between the cities, given the radius of the earth is 3960 miles.

Again start with $\mathrm{s}=\mathrm{r}^{*} \theta$,
with $\mathrm{r}=3960$ miles and $\theta=35-30=5^{\circ}=5^{*}(\pi / 180)=(1 / 36) \pi$. and we need to find $s=$ arc length $=$ distance between the cities.

$$
\mathrm{s}=3960 *(1 / 36) \pi=110 \pi \text { miles }
$$

60. A sector of a circle of radius 24 miles has an area of 288 square miles.

 Find the central angle of the sector.For this you need a new formula.
The area of a sector of circle $=A=1 / 2^{*} r^{2} * \theta$,
where θ is the central angle of the sector measured in radians and r of course is the radius of the circle.

For this problem $\mathrm{r}=24$ miles, $\mathrm{A}=288$ sq. miles and we need to find θ.
$288=(1 / 2) * 24^{2} * \theta \rightarrow 288=288^{*} \theta \rightarrow 1$ radian $=\theta\left(\right.$ or about $\left.57.3^{\circ}\right)$
62. Three circles with radii 1,2 and 3 feet are externally tangent to one another. Find the area of the sector of the circle of radius 1 that is cut off by the line segments joining the center of that circle to the centers of the other two circles.

So you start out with:

Notice you know the length of ALL the sides of the triangle, because you know the radius of each circle. From this you might discern that: $5^{2}=3^{2}+4^{2}$. Thus you have the (length of the hypotenuse) $)^{2}=(\text { length of side } A)^{2}+(\text { length of side } B)^{2}$. And from that you may conclude the triangle is a right triangle, or rather the angle we are interested in is 90°. Thus we use the area formula given in the text:
The area of a sector of circle $=\mathrm{A}=1 / 2^{*} \mathrm{r}^{2} * \theta$,

For this problem $\mathrm{r}=1$ foot, $\theta=90^{\circ}=\pi / 2$, and we need to find A
$\mathrm{A}=1 / 2 * 1^{2} * \pi / 2=\pi / 4$ square feet.
66. The earth rotates about its axis once every 23 hours 56 minutes and 4 seconds. The radius of the earth is 3960 miles. Find the linear speed of a point on the equator in miles per hour (mph).

First convert 23 hours 56 minutes and 4 seconds to seconds (I like integers):
$23 * 3600+56 * 60+4=86164$ seconds.
86164 seconds $/ 3600$ seconds per hour $=21541 / 900$ hours
Recall that a complete rotation would be an angle $\theta=2 \pi$.
So the distance a point on the earth moves (rotationally) in 1 rotation $=$ the circumference of the earth $=2 \pi r=2 \pi * 3960$ miles.

$$
\begin{aligned}
\text { And the points linear speed } & =(2 \pi * 3960 \text { miles }) / 86164 \text { seconds } \\
& =(2 \pi * 3960 \text { miles }) /(21541 / 900) \text { hours } \\
& =(7128000 / 21541) * \pi \text { miles per hour } \\
& \sim=330.9038578 * \pi \text { miles per hour } \\
& \sim=\mathbf{1 0 3 9 . 5 6 5 1 2 9} \text { miles per hour }
\end{aligned}
$$

