# Section 6.3 Solutions and Hints 

by Brent M. Dingle

for the book:<br>Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

This should look very familiar. It is building on what you learned in sections 5.1 and 5.2.
A new formula you should know is:
The area of a triangle with sides of length a and $b=A=1 / 2 * a * b^{*} \sin (\theta)$, where $\theta$ is the angle between sides $a$ and $b$.

## 52. Find the area of an equilateral triangle with side length of 10.

Recall an equilateral triangle means that all sides are the same length and all the angles are $60^{\circ}$. Thus

$$
A=1 / 2^{*} 10^{*} 10^{*} \sin \left(60^{\circ}\right)=50^{*} \sin \left(60^{\circ}\right) \sim=43.3
$$

## 54. Find the area of the shaded region of the figure:



For this you need 2 formulas:
The area of a triangle with sides of length a and $\mathrm{b}=\mathrm{A}=1 / 2^{*} \mathrm{a}^{*} \mathrm{~b}^{*} \sin (\theta)$, where $\theta$ is the angle between sides $a$ and $b$.
and from section 6.1:
The area of a sector of a circle $=\mathrm{A}=1 / 2^{*} \mathrm{r}^{2} * \theta$,
where $\theta$ is the central angle of the sector measured in radians and $r$ of course is the radius of the circle.

Let the area of the triangle $=\mathrm{A}_{\text {triangle }}$.
Let the area of the entire sector $=\mathrm{A}_{\text {sector }}$.
And thus the area of the shaded region $=\mathrm{A}=\mathrm{A}_{\text {sector }}-\mathrm{A}_{\text {triangle }}$.
Note: $\mathrm{a}=\mathrm{b}=\mathrm{r}=2$ (because the triangle sides are formed from the circle's center)

$$
\begin{aligned}
& \mathrm{A}_{\text {triangle }}=1 / 2 * 2 * 2 * \sin \left(120^{\circ}\right) \sim=1.732 \\
& \mathrm{~A}_{\text {sector }}=1 / 2 * 2^{2} *\left[120^{\circ} *\left(\pi \text { radians } / 180^{\circ}\right)\right] \sim=4.18879 \\
& \mathrm{~A} \sim=\mathrm{A}_{\text {sector }}-\mathrm{A}_{\text {triangle }}=4.18879-1.732=\mathbf{2 . 4 5 6 7}
\end{aligned}
$$

