Section 6.4 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
23. To find the distance across a river, a surveyor chooses points A and B, which are 200 feet apart on one side of the river. He then chooses a reference point C on the opposite side of the river and finds that $\angle B A C=82^{\circ}$ and $\angle A B C=52^{\circ}$. Approximate the distance from A to C.

Recall the sum of the angles of a triangle must be 180°.
Thus $\angle \mathrm{ACB}=180-(82+52)=46^{\circ}$.
Let $\mathrm{c}=200$ feet
Let $\mathrm{b}=$ distance from A to C
From the Law of Sines we have:

$$
\begin{aligned}
(\sin \mathrm{C}) / \mathrm{c}=(\sin \mathrm{B}) / \mathrm{b} & \rightarrow \sin \left(46^{\circ}\right) / 200=\sin \left(52^{\circ}\right) / \mathrm{b} \\
& \rightarrow b^{*} \sin \left(46^{\circ}\right) / 200=\sin \left(52^{\circ}\right) \\
& \rightarrow b^{*} \sin \left(46^{\circ}\right)=200^{*} \sin \left(52^{\circ}\right) \\
& \rightarrow \mathrm{b}=200^{*} \sin \left(52^{\circ}\right) / \sin \left(46^{\circ}\right) \\
& \rightarrow \mathrm{b} \cong \mathbf{2 1 9} \text { feet }
\end{aligned}
$$

26. A tree on a hillside casts a shadow 215 feet down the hill. If the angle of inclination of the hillside is known to be 22° to the horizontal and the angle of elevation to the sun is 52°, find the height of the tree.

Assume the tree is growing perpendicular to the horizontal (i.e. straight upwards).

Notice there are really 2 triangles in this picture of significance:

So looking at the green triangle we will find x and h 1
Notice all angles are known as the sum of the angles of a triangle $=180^{\circ}$.

Finding x:

$$
\begin{aligned}
\sin \left(68^{\circ}\right) / \mathrm{x}=\sin \left(90^{\circ}\right) / 215 & \rightarrow \sin \left(68^{\circ}\right)=\mathrm{x}^{*} \sin \left(90^{\circ}\right) / 215 \\
& \rightarrow 215^{*} \sin \left(68^{\circ}\right)=\mathrm{x} * \sin \left(90^{\circ}\right) \\
& \rightarrow 215^{*} \sin \left(68^{\circ}\right)=\mathrm{x}^{*} \\
& \rightarrow 199.34 \cong \mathrm{x}
\end{aligned}
$$

Finding h1:

$$
\begin{aligned}
\sin \left(22^{\circ}\right) / \mathrm{h} 1=\sin \left(90^{\circ}\right) / 215 & \rightarrow \sin \left(22^{\circ}\right)=\mathrm{h} 1^{*} \sin \left(90^{\circ}\right) / 215 \\
& \rightarrow 215^{*} \sin \left(22^{\circ}\right)=\mathrm{h} 1 * \sin \left(90^{\circ}\right) \\
& \rightarrow 215^{*} \sin \left(22^{\circ}\right)=\mathrm{h} 1 * 1 \\
& \rightarrow 80.54 \cong \mathrm{~h} 1
\end{aligned}
$$

Now we will use the larger triangle, putting in x and solve for $\mathrm{h} 1+\mathrm{h} 2$:

Thus by Law of Sines:

$$
\begin{aligned}
& \sin \left(52^{\circ}\right) /(\mathrm{h} 1+\mathrm{h} 2)=\sin \left(38^{\circ}\right) / 199.34 \\
& \sin \left(52^{\circ}\right)=(\mathrm{h} 1+\mathrm{h} 2)^{*} \sin \left(38^{\circ}\right) / 199.34 \\
& 199.34^{*} \sin \left(52^{\circ}\right)=(\mathrm{h} 1+\mathrm{h} 2)^{*} \sin \left(38^{\circ}\right) \\
& 199.34^{*} \sin \left(52^{\circ}\right) / \sin \left(38^{\circ}\right)=(\mathrm{h} 1+\mathrm{h} 2) \\
& 255.14 \cong(\mathrm{~h} 1+\mathrm{h} 2)
\end{aligned}
$$

And we previously determined that $\mathrm{h} 1 \cong 80.54$, so $255.14 \cong 80.54+\mathrm{h} 2$ $\mathrm{h} 2 \cong \mathbf{1 7 4 . 6}$ feet is the approximate height of the tree.

