Section 6.5 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

31. A pilot flies in a straight path for 1 hour and 30 minutes. She then makes a course correction heading 10° to the right of her original course and flies 2 hours in the new direction. If she maintains a constant speed of 625 miles per hour, how far is she from her original position?

First notice the distance she flew in the original direction $=625 * 1.5=937.5$ miles. The distance along the altered course $=625 * 2=1250$ miles. This would result in a picture as follows:

To find c we simply apply the Law of Cosines:

$$
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} * \cos (\mathrm{C}), \text { with } \mathrm{a}=937.5, \mathrm{~b}=1250 \text { and } \mathrm{C}=170^{\circ} \\
& \mathrm{c}^{2}=(937.5)^{2}+(1250)^{2}-2 * 937.5^{*} 1250 * \cos \left(170^{\circ}\right) \\
& \mathrm{c}^{2} \cong 4749549.421 \\
& \mathrm{c} \cong \mathbf{2 1 7 9 . 3 4} \text { miles }
\end{aligned}
$$

33. A fisherman leaves his home port and heads in the direction $\mathbf{N} 70^{\circ} \mathrm{W}$. He travels 30 miles and reaches Egg Island. The next day he sails $\mathrm{N} 10^{\circ} \mathrm{E}$ for 50 miles and reaches Forrest Island.

33a. Find the distance between the fisherman's home port and Forrest Island.

Notice we filled in the 20° by the sum of the degrees in a triangle $=180^{\circ}$.
So we went $\alpha=180-(70+90)=20^{\circ}$
And we filled in the 80° because $\beta=90-10=80^{\circ}$.
Thus $\angle \mathrm{C}=80+20=100^{\circ}, \quad \mathrm{a}=30$ miles, $\mathrm{b}=50$ miles and we apply the Law of Cosines:

$$
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} * \cos (\mathrm{C}) \\
& \mathrm{c}^{2}=30^{2}+50^{2}-2 * 30 * 50 * \cos \left(100^{\circ}\right) \\
& \mathrm{c}^{2} \cong 3920.944533 \text { miles } \\
& \mathrm{c} \cong \mathbf{6 2 . 6 1 7} \text { miles }
\end{aligned}
$$

33b. Find the bearing from Forrest Island back to his home port.
This can be done several ways. Using the Law of Sines:
$\sin \left(100^{\circ}\right) / 62.617=\sin (\mathrm{A}) / 30 \rightarrow \sin ^{-1}\left(30^{*} \sin \left(100^{\circ}\right) / 62.617\right)=\mathrm{A}$

$$
\rightarrow \mathrm{A} \cong 28.16^{\circ}
$$

Note to complete out the triangle with hypotenuse $=50$ miles the angles are: $90^{\circ}, 80^{\circ}$ and 10°. Thus 10° of that 28.16 is "used up" and we arrive at the heading of: $\mathbf{S} \mathbf{1 8 . 1 6}{ }^{\circ} \mathbf{E}$

