Section 7.1 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

40. Verify the identity.

Notice the right hand side involves sec x and tan x, both of which have $\cos x$ as their denominator. So if we could get the denominator of the left hand side to be something equal to $\cos x$ (or maybe $\cos^2 x$) we would likely be on the right path.

LHS =
$$\frac{1 - \sin x}{1 + \sin x}$$
, multiply by "one"
(because we want $1 - \sin^2 x$ as the denominator)
= $\frac{1 - \sin x}{1 + \sin x} * \frac{1 - \sin x}{1 - \sin x}$, simplify
= $\frac{1 - 2\sin x + \sin^2 x}{1 - \sin^2 x}$, notice $1 - \sin^2 x = \cos^2 x$
= $\frac{1 - 2\sin x + \sin^2 x}{\cos^2 x}$, break stuff up into 3 fractions (all same denom)
= $\frac{1}{\cos^2 x} - \frac{2\sin x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}$, simplify by using identities
= $\sec^2 x - 2 * \frac{1}{\cos x} * \frac{\sin x}{\cos x} + \tan^2 x$, continue simplifying
= $\sec^2 x - 2 * \sec x * \tan x + \tan^2 x$, now factor
= $(\sec x - \tan x)^* (\sec x - \tan x)$
= $(\sec x - \tan x)^2$ = RHS

LHS = RHS, so we are done.

44. Verify the identity.

Notice that as stuff is in the form $A^{even power} - B^{even power}$, it is likely we can factor stuff and get nice things to happen:

LHS = $\sin^4\theta - \cos^4\theta$ = $(\sin^2\theta - \cos^2\theta)(\sin^2\theta + \cos^2\theta)$, apply identity $1 = (\sin^2\theta + \cos^2\theta)$ = $(\sin^2\theta - \cos^2\theta)^*1$ = $(\sin^2\theta - \cos^2\theta)$ = RHS

LHS = RHS so we are done.