Section 7.1
 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

40. Verify the identity.

Notice the right hand side involves $\sec \mathrm{x}$ and $\tan \mathrm{x}$, both of which have $\cos \mathrm{x}$ as their denominator. So if we could get the denominator of the left hand side to be something equal to $\cos x$ (or maybe $\cos ^{2} x$) we would likely be on the right path.

$$
\begin{aligned}
& \text { LHS }=\frac{1-\sin x}{1+\sin x}, \quad \quad \text { multiply by "one" } \\
& \text { (because we want } 1-\sin ^{2} \mathrm{x} \text { as the denominator) } \\
& =\frac{1-\sin x}{1+\sin x} * \frac{1-\sin x}{1-\sin x}, \quad \text { simplify } \\
& =\frac{1-2 \sin x+\sin ^{2} x}{1-\sin ^{2} x}, \quad \text { notice } 1-\sin ^{2} x=\cos ^{2} x \\
& =\frac{1-2 \sin x+\sin ^{2} x}{\cos ^{2} x}, \quad \text { break stuff up into } 3 \text { fractions (all same denom) } \\
& =\frac{1}{\cos ^{2} x}-\frac{2 \sin x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}, \quad \text { simplify by using identities } \\
& =\sec ^{2} x-2 * \frac{1}{\cos x} * \frac{\sin x}{\cos x}+\tan ^{2} x \text {, continue simplifying } \\
& =\sec ^{2} x-2 * \sec x * \tan x+\tan ^{2} x, \quad \text { now factor } \\
& =(\sec x-\tan x)^{*}(\sec x-\tan x) \\
& =(\sec x-\tan x)^{2} \quad=\text { RHS }
\end{aligned}
$$

LHS $=$ RHS, so we are done.

44. Verify the identity.

Notice that as stuff is in the form $\mathrm{A}^{\text {even power }}-\mathrm{B}^{\text {even power }}$, it is likely we can factor stuff and get nice things to happen:

$$
\begin{aligned}
\text { LHS } & =\sin ^{4} \theta-\cos ^{4} \theta \\
& =\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \quad, \text { apply identity } 1=\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =\left(\sin ^{2} \theta-\cos ^{2} \theta\right) * 1 \\
& =\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \quad=\text { RHS }
\end{aligned}
$$

LHS $=$ RHS so we are done.

