Section 7.4 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
50. A 50 ft pole casts a shadow as shown.

50 a. Express the angle of elevation, θ, of the sun as a function of the length of the shadow, s.

$$
\begin{aligned}
\tan (\theta)=\text { opposite } / \text { adjacent }=50 / \mathrm{s} & \rightarrow \tan ^{-1}(\tan (\theta))=\tan ^{-1}(50 / \mathrm{s}) \\
& \rightarrow \theta=\tan ^{-1}(\mathbf{5 0} / \mathbf{s})
\end{aligned}
$$

50b. Find the angle θ of elevation of the sun when the shadow is $\mathbf{2 0} \mathrm{ft}$ long.

$$
\theta=\tan ^{-1}(50 / \mathrm{s})=\tan ^{-1}(50 / 20)=\pi / 2-\tan ^{-1}(2 / 5) \cong \mathbf{1 . 1 9} \text { radians } \cong 68.2^{\circ} .
$$

